【题目】已知椭圆
过点
,且其中一个焦点的坐标为
.
(1)求椭圆
的方程;
(2)过椭圆
右焦点
的直线
与椭圆交于两点
,在
轴上是否存在点
,使得
为定值?若存在,求出点
的坐标;若不存在,请说明理由.
科目:高中数学 来源: 题型:
【题目】某工厂生产一种产品,根据预测可知,该产品的产量平稳增长,记2015年为第1年,第x年与年产量
(万件)之间的关系如下表所示:
x | 1 | 2 | 3 | 4 |
| 4.00 | 5.52 | 7.00 | 8.49 |
现有三种函数模型:
,
,![]()
(1)找出你认为最适合的函数模型,并说明理由,然后选取
这两年的数据求出相应的函数解析式;
(2)因受市场环境的影响,2020年的年产量估计要比预计减少30%,试根据所建立的函数模型,估计2020年的年产量.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图1,有一边长为2的正方形ABCD,E是边AD的中点,将
沿着直线BE折起至
位置(如图2),此时恰好
,点
在底面上的射影为O.
![]()
(1)求证:
;
(2)求直线
与平面BCDE所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为迎接2017年“双
”,“双
”购物狂欢节的来临,某青花瓷生产厂家计划每天生产汤碗、花瓶、茶杯这三种瓷器共
个,生产一个汤碗需
分钟,生产一个花瓶需
分钟,生产一个茶杯需
分钟,已知总生产时间不超过
小时.若生产一个汤碗可获利润
元,生产一个花瓶可获利润
元,生产一个茶杯可获利润
元.
(1)使用每天生产的汤碗个数
与花瓶个数
表示每天的利润
(元);
(2)怎样分配生产任务才能使每天的利润最大,最大利润是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】用清水漂洗衣服上残留的洗衣液,对用一定量的清水漂洗一次的效果作如下假定:用1个单位量的水可洗掉衣服上残留洗衣液质量的一般,用水越多漂洗效果越好,但总还有洗衣液残留在衣服上.设用
单位量的清水漂洗一次后,衣服上残留的洗衣液质量与本次漂洗前残留的洗衣液质量之比为函数
,其中
.
(1)试规定
的值,并解释其实际意义;
(2)根据假定写出函数
应该满足的条件和具有的性质,并写出满足假定的一个指数函数;
(3)设函数
.现有
(
)单位量的清水,可供漂洗一次,也可以把水平均分成2份后先后漂洗两次,试确定哪种方式漂洗效果更好?并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】即将开工的南昌与周边城镇的轻轨火车路线将大大缓解交通的压力,加速城镇之间的流通.根据测算,如果一列火车每次拖4节车厢,每天能来回16次;如果一列火车每次拖7节车厢,每天能来回10次,每天来回次数
是每次拖挂车厢个数
的一次函数.
(1)写出
与
的函数关系式;
(2)每节车厢一次能载客110人,试问每次应拖挂多少节车厢才能使每天营运人数
最多?并求出每天最多的营运人数(注:营运人数指火车运送的人数)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥S-ABCD的底面是边长为2的正方形,每条侧棱的长都是底面边长的
倍,P为侧棱SD上的点.
![]()
(1)求证:AC⊥SD;
(2)若SD⊥平面PAC,求二面角P-AC-D的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,
为偶函数,且当
时,
.记
.给出下列关于函数
的说法:①当
时,
;②函数
为奇函数;③函数
在
上为增函数;④函数
的最小值为
,无最大值.其中正确的是______.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com