已知椭圆
:
与
正半轴、
正半轴的交点分别为
,动点
是椭圆上任一点,求
面积的最大值。
科目:高中数学 来源: 题型:解答题
椭圆以坐标轴为对称轴,且经过点
、
.记其上顶点为
,右顶点为
.
(1)求圆心在线段
上,且与坐标轴相切于椭圆焦点的圆的方程;
(2)在椭圆位于第一象限的弧
上求一点
,使
的面积最大.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在
轴上方有一段曲线弧
,其端点
、
在
轴上(但不属于
),对
上任一点
及点
,
,满足:
.直线
,
分别交直线
于
,
两点.![]()
(Ⅰ)求曲线弧
的方程;
(Ⅱ)求
的最小值(用
表示);
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知双曲线
(a>0,b>0)的离心率
,过点A(0,-b)和B(a,0)的直线与原点的距离是
.
(Ⅰ)求双曲线的方程及渐近线方程;
(Ⅱ)若直线y=kx+5 (k≠0)与双曲线交于不同的两点C、D,且两点都在以A为圆心的同一个圆上,求k的值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)已知圆M:(x+1)2+y2=1,圆N:(x-1)2+y2=9,动圆P与圆M外切并与圆N内切,圆心P的轨迹为曲线 C
(Ⅰ)求C的方程;
(Ⅱ)l是与圆P,圆M都相切的一条直线,l与曲线C交于A,B两点,当圆P的半径最长时,求|AB|.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
点P是椭圆
外的任意一点,过点P的直线PA、PB分别与椭圆相切于A、B两点。
(1)若点P的坐标为
,求直线
的方程。
(2)设椭圆的左焦点为F,请问:当点P运动时,
是否总是相等?若是,请给出证明。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知抛物线
,点P(-1,0)是其准线与
轴的焦点,过P的直线
与抛物线C交于A、B两点.
(1)当线段AB的中点在直线
上时,求直线
的方程;
(2)设F为抛物线C的焦点,当A为线段PB中点时,求△FAB的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,已知椭圆
:
的离心率为
,以椭圆
的左顶点
为圆心作圆
:
,设圆
与椭圆
交于点
与点
.![]()
(1)求椭圆
的方程;
(2)求
的最小值,并求此时圆
的方程;
(3)设点
是椭圆
上异于
,
的任意一点,且直线
分别与
轴交于点
,
为坐标原点,
求证:
为定值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com