如图,已知椭圆
:
的离心率为
,以椭圆
的左顶点
为圆心作圆
:
,设圆
与椭圆
交于点
与点
.![]()
(1)求椭圆
的方程;
(2)求
的最小值,并求此时圆
的方程;
(3)设点
是椭圆
上异于
,
的任意一点,且直线
分别与
轴交于点
,
为坐标原点,
求证:
为定值.
(1)
;(2)
,
;(3)证明过程详见解析.
解析试题分析:(1)先通过离心率求出
,再通过
,然后写出椭圆方程;(2)先设出
点的坐标,由于点
在椭圆
上,所以
,找到
向量坐标,根据点乘列出表达式,配方法找到表达式的最小值,得到
点坐标,点
在圆上,代入得到圆的半径,就可以得到圆的方程;(3)设出点
的坐标,列出直线
的方程,因为直线与
轴有交点,所以令
,得到
,所以
,又因为点
在椭圆上,得到方程,代入
中,得到
,所以
.
试题解析:(1)依题意,得
,
,∴
;
故椭圆
的方程为
. 3分
(2)方法一:点
与点
关于
轴对称,设
,
, 不妨设
.
由于点
在椭圆
上,所以
. (*) 4分
由已知
,则
,
,
所以
![]()
. 6分
由于
,故当
时,
取得最小值为
.
由(*)式,
,故
,又点
在圆
上,代入圆的方程得到
.
故圆
的方程为:
. 8分
方法二:点
与点
关于
轴对称,故设
,
不妨设
,由已知
,则
![]()
. 6分
故当
时,
取得最小值为
,此时
,
又点
在圆
上,代入圆的方程得到
.
故圆
的方程为:
. 8分
(3) 方法一:设
,则直线
的方程为:![]()
![]()
科目:高中数学 来源: 题型:解答题
已知椭圆:
(
)上任意一点到两焦点距离之和为
,离心率为
,左、右焦点分别为
,
,点
是右准线上任意一点,过
作直 线
的垂线
交椭圆于
点.![]()
(1)求椭圆
的标准方程;
(2)证明:直线
与直线
的斜率之积是定值;
(3)点
的纵坐标为3,过
作动直线
与椭圆交于两个不同点
,在线段
上取点
,满足
,试证明点
恒在一定直线上.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆C:
(a>b>0)的两个焦点和短轴的两个端点都在圆
上.
(I)求椭圆C的方程;
(II)若斜率为k的直线过点M(2,0),且与椭圆C相交于A, B两点.试探讨k为何值时,三角形OAB为直角三角形.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设椭圆
的左右顶点分别为
,离心率
.过该椭圆上任一点
作
轴,垂足为
,点
在
的延长线上,且
.
(1)求椭圆的方程;
(2)求动点
的轨迹
的方程;
(3)设直线
(
点不同于
)与直线
交于点
,
为线段
的中点,试判断直线
与曲线
的位置关系,并证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知圆C:
的半径等于椭圆E:
(a>b>0)的短半轴长,椭圆E的右焦点F在圆C内,且到直线l:y=x-
的距离为
-
,点M是直线l与圆C的公共点,设直线l交椭圆E于不同的两点A(x1,y1),B(x2,y2).![]()
(Ⅰ)求椭圆E的方程;
(Ⅱ)求证:|AF|-|BF|=|BM|-|AM|.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知
、
是椭圆![]()
的左、右焦点,且离心率
,点
为椭圆上的一个动点,
的内切圆面积的最大值为
.
(1) 求椭圆的方程;
(2) 若
是椭圆上不重合的四个点,满足向量
与
共线,
与
共
线,且
,求
的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com