设
,函数
.
(1)若
,求函数
在区间
上的最大值;
(2)若
,写出函数
的单调区间(不必证明);
(3)若存在
,使得关于
的方程
有三个不相等的实数解,求实数
的取值范围.
(1)9(2)单调递增区间是
和
,单调递减区间是
(3)![]()
【解析】(1)当
,
时,![]()
![]()
作函数图像(图像略),可知函数
在区间
上是增函数,所以
的最大值为
.…………(4分)
(2)
……(1分)
①当
时,
,
因为
,所以
,
所以
在
上单调递增.…………(3分)
②当
时,
,
因为
,所以
,所以
在
上单调递增,在
上单调递减.…………(5分)
综上,函数
的单调递增区间是
和
,
单调递减区间是
.………………(6分)
(3)①当
时,
,
,所以
在
上是增函数,关于
的方程
不可能有三个不相等的实数解.…………(2分)
②当
时,由(1)知
在
和
上分别是增函数,在
上是减函数,当且仅当
时,方程
有三个不相等的实数解.
即
.…………(5分)
令
,
在
时是增函数,故
.…………(7分)
所以,实数
的取值范围是
.…………(8分)
科目:高中数学 来源:2014年高考数学全程总复习课时提升作业七十七选修4-4第一节练习卷(解析版) 题型:解答题
已知圆O1和圆O2的极坐标方程分别为ρ=2,ρ2-2
ρcos(θ-
)=2.
(1)把圆O1和圆O2的极坐标方程化为直角坐标方程.
(2)求经过两圆交点的直线的极坐标方程.
查看答案和解析>>
科目:高中数学 来源:2014年高考数学全程总复习课时提升作业七十一第十章第八节练习卷(解析版) 题型:选择题
设某项试验的成功率是失败率的2倍,用随机变量X去描述1次试验的成功次数,则P(X=0)等于( )
(A)0 (B)
(C)
(D)![]()
查看答案和解析>>
科目:高中数学 来源:2014年高中数学全国各省市理科导数精选22道大题练习卷(解析版) 题型:解答题
已知函数
,
,其中
.
(Ⅰ)求
的极值;
(Ⅱ)若存在区间
,使
和
在区间
上具有相同的单调性,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源:2014年高中数学全国各省市理科导数精选22道大题练习卷(解析版) 题型:解答题
若
,其中
.
(1)当
时,求函数
在区间
上的最大值;
(2)当
时,若
,
恒成立,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源:2014年高中数学全国各省市理科导数精选22道大题练习卷(解析版) 题型:解答题
已知二次函数
,关于x的不等式
的解集为
,其中m为非零常数.设
.
(1)求a的值;
(2)
如何取值时,函数
存在极值点,并求出极值点;
(3)若m=1,且x>0,求证:![]()
查看答案和解析>>
科目:高中数学 来源:2014年陕西省咸阳市高考模拟考试(一)理科数学试卷(解析版) 题型:选择题
某几何体的三视图如右图(其中侧视图中的圆弧是半圆),则该几何体的表面积为( )
![]()
A.
B.
C.
D.![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com