【题目】已知圆
:
过椭圆
:
的短轴端点,
分别是圆
与椭圆
上任意两点,且线段
长度的最大值为3.
(1)求椭圆
的方程;
(2)过点
作圆
的一条切线交椭圆
于
两点,求
的面积的最大值.
【答案】(1)
(2)1
【解析】试题分析:(Ⅰ)由圆
过椭圆
的短轴端点
,线段
长度的最大值为3,
,
,即可求得椭圆方程;
(Ⅱ)设直线
的方程,由点到直线的距离公式,求得
,代入椭圆方程,由韦达定理及弦长公式求得
,利用三角形的面积公式及基本不等式的性质,即可求得
的面积的最大值.
试题解析:(1)∵圆
过椭圆
的短轴端点,∴
,又∵线段
长度的最大值为3,∴
,即
,∴椭圆
的标准方程为
.
(2)由题意可设切线
的方程为
,即
,则
,得
.①
联立得方程组
,消去
整理得
.其中
,
设
,则
,
,
则
②
将①代入②得
,∴
,而
,等号成立,当且仅当
,即
.
综上可知,
.
点晴:本题主要考查直线与圆锥曲线位置关系. 直线和圆锥曲线的位置关系一方面要体现方程思想,另一方面要结合已知条件,从图形角度求解.联立直线与圆锥曲线的方程得到方程组,化为一元二次方程后由根与系数的关系求解是一个常用的方法. 涉及弦长的问题中,应熟练地利用根与系数关系、设而不求法计算弦长.
科目:高中数学 来源: 题型:
【题目】设集合
,若X是
的子集,把X中所有元素的和称为X的“容量”(规定空集的容量为0),若X的容量为奇(偶)数,则称X为
的奇(偶)子集.
(1)写出S4的所有奇子集;
(2)求证:
的奇子集与偶子集个数相等;
(3)求证:当n≥3时,
的所有奇子集的容量之和等于所有偶子集的容量之和.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某大学生在开学季准备销售一种文具套盒进行试创业,在一个开学季内,每售出
盒该产品获利润
元;未售出的产品,每盒亏损
元.根据历史资料,得到开学季市场需求量的频率分布直方图,如图所示,该同学为这个开学季购进了
盒该产品,以
(单位:盒,
)表示这个开学季内的市场需求量,(单位:元)表示这个开学季内经销该产品的利润.
(1)根据直方图估计这个开学季内市场需求量
的中位数;
(2)将
表示为
的函数;
(3)根据直方图估计利润不少于
元的概率.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某企业生产A、B两种产品,根据市场调查,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2(注:单位是万元).
![]()
![]()
图1图2
(1)分别将A、B两种产品的利润表示为投资的函数,写出它们的函数关系式;
(2)现企业有20万元资金全部投入A、B两种产品的生产,问:怎样分配这20万元资金,能使获得的利润最大,其最大利润是多少万元?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知椭圆C的中心在原点,其一个焦点与抛物线y2=4
x的焦点相同,又椭圆C上有一点M(2,1),直线l平行于OM且与椭圆C交于A,B两点,连接MA,MB.
![]()
(1)求椭圆C的方程;
(2)当MA,MB与x轴所构成的三角形是以x轴上所在线段为底边的等腰三角形时,求直线l在y轴上截距的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知M(x0,y0)是椭圆C:
+
=1上的任一点,从原点O向圆M:(x-x0)2+(y-y0)2=2作两条切线,分别交椭圆于点P,Q.
![]()
(1)若直线OP,OQ的斜率存在,并记为k1,k2,求证:k1k2为定值;
(2)试问|OP|2+|OQ|2是否为定值?若是,求出该值;若不是,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}满足a1=a,an+1=2an+
(a,λ∈R).
(1)若λ=-2,数列{an}单调递增,求实数a的取值范围;
(2)若a=2,试写出an≥2对任意的n∈N*成立的充要条件,并证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知在极坐标系中点C的极坐标为
.
(1)求出以点C为圆心,半径为2的圆的极坐标方程(写出解题过程)并画出图形;
(2)在直角坐标系中,以圆C所在极坐标系的极点为原点,极轴为x轴的正半轴建立直角坐标系,点P是圆C上任意一点,Q(5,-
),M是线段PQ的中点,当点P在圆C上运动时,求点M的轨迹的普通方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
,
∈[1,+∞).
(1)当
时,判断函数
的单调性并证明;
(2)当
时,求函数
的最小值;
(3)若对任意
∈[1,+∞),
>0恒成立,试求实数
的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com