精英家教网 > 高中数学 > 题目详情

【题目】有一项针对我国《义务教育数学课程标准》的研究,表1为各个学段每个内容主题所包含的条目数.下图是将下表的条目数转化为百分比,按各学段绘制的等高条形图.由图表分析得出以下四个结论,其中错误的是( )

学段

内容主题

第一学段

13年级)

第二学段

46年级)

第三学段

79年级)

合计

数与代数

21

28

49

98

图形与几何

18

25

87

130

统计与概率

3

8

11

22

综合与实践

3

4

3

10

合计

45

65

150

260

A.除了“综合与实践”外,其他三个内容领域的条目数都随着学段的升高而增加,尤其“图形与几何”在第三学段急剧增加,约是第二学段的3.5

B.在所有内容领域中,“图形与几何”内容最多,占.“综合与实践”内容最少,约占

C.第一、二学段“数与代数”内容最多,第三学段“图形与几何”内容最多

D.“数与代数”内容条目数虽然随着学段的增长而增长,而其百分比却一直在减少.“图形与几何”内容条目数,百分比都随学段的增长而增长

【答案】D

【解析】

利用表格计算条目数的有关数据,从等高条形看比例变化趋势,逐个选项进行判断即可.

A:根据表格可知:除了“综合与实践”外,其他三个内容领域的条目数都随着学段的升高而增加,尤其“图形与几何”在第三学段急剧增加,约是第二学段的倍,故本选项说法正确;

B:根据表格可知:“图形与几何”内容最多,占,“综合与实践”内容最少,约占,故本选项说法正确;

C:根据表格可知:第一、二学段“数与代数”内容分别是,数目最多,第三学段“图形与几何”内容为87,数目最多,故本选项说法正确;

D:“数与代数”内容条目数在每一学段的内容条目数分别为:数与代数”内容条目数在每一学段的百分比分别为:

,因此“数与代数”内容条目数虽然随着学段的增长而增长,而其百分比却一直在减少这种说法正确;

“图形与几何”内容条目数在每一学段的百分比分别为:

因此图形与几何”内容条目数,百分比都随学段的增长而增长这种说法是错误的.

故选:D

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某小区内有一块以为圆心半径为20米的圆形区域.广场,为丰富市民的业余文化生活,现提出如下设计方案:如图,在圆形区域内搭建露天舞台,舞台为扇形区域,其中两个端点分别在圆周上;观众席为梯形内且在圆外的区域,其中,且在点的同侧.为保证视听效果,要求观众席内每一个观众到舞台处的距离都不超过60米.设.

(1)求的长(用表示);

(2)对于任意,上述设计方案是否均能符合要求?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】直线是过点的动直线,当与圆相切时,同时也和抛物线相切.

1)求抛物线的方程;

2)直线与抛物线交于不同的两点,与圆交于不同的两点AB面积为面积为,当时,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“未来肯定是非接触的,无感支付的方式将成为主流,这有助于降低交互门槛”.云从科技联合创始人姚志强告诉南方日报记者.相对于主流支付方式二维码支付,刷脸支付更加便利,以前出门一部手机解决所有,而现在连手机都不需要了,毕竟,手机支付还需要携带手机,打开二维码也需要时间和手机信号.刷脸支付将会替代手机,成为新的支付方式.某地从大型超市门口随机抽取50名顾客进行了调查,得到了如表列联表:

1)请将上面的列联表补充完整,并判断是否有的把握认为使用刷脸支付与性别有关?

2)从参加调查且使用刷脸支付的顾客中随机抽取2人参加抽奖活动,抽奖活动规则如下:“一等奖”中奖概率为0.25,奖品为10元购物券张(,且),“二等奖”中奖概率0.25,奖品为10元购物券两张,“三等奖”中奖概率0.5,奖品为10元购物券一张,每位顾客是否中奖相互独立,记参与抽奖的两位顾客中奖购物券金额总和为元,若要使的均值不低于50元,求的最小值.

附:,其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着新高考改革的不断深入,高中学生生涯规划越来越受到社会的关注.一些高中已经开始尝试开设学生生涯规划选修课程,并取得了一定的成果.如表为某高中为了调查学生成绩与选修生涯规划课程的关系,随机抽取50名学生的统计数据.

成绩优秀

成绩不够优秀

总计

选修生涯规划课

15

10

25

不选修生涯规划课

6

19

25

总计

21

29

50

1)根据列联表运用独立性检验的思想方法能否有99%的把握认为“学生的成绩是否优秀与选修生涯规划课有关”,并说明理由;

2)现用分层抽样的方法在选修生涯规划课的成绩优秀和成绩不够优秀的学生中随机抽取5名学生作为代表,从5名学生代表中再任选2名学生继续调查,求这2名学生成绩至少有1人优秀的概率.

参考附表:

PK2k

0.100

0.050

0.010

0.001

k

2.706

3.841

6.635

10.828

参考公式,其中na+b+c+d.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线的极坐标方程为,直线的参数方程为为参数).

(Ⅰ)求曲线的参数方程与直线的普通方程;

(Ⅱ)设点为曲线上的动点,点和点为直线上的点,且.面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,已知方程为常数)在上恰有三个根,分别为,下述四个结论:

①当时,的取值范围是

②当时,上恰有2个极小值点和1个极大值点;

③当时,上单调递增;

④当时,的取值范围为,且

其中正确的结论个数为(

A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为为参数),以原点为极点,以轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为.

1)求曲线的普通方程与曲线的直角坐标方程;

2)设为曲线上位于第一,二象限的两个动点,且,射线交曲线分别于,求面积的最小值,并求此时四边形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题的展开式中,仅有第7项的二项式系数最大,则展开式中的常数项为495;命题随机变量服从正态分布,且,则.现给出四个命题:,其中真命题的是(

A.①③B.①④C.②③D.②④

查看答案和解析>>

同步练习册答案