精英家教网 > 高中数学 > 题目详情
15.已知函数$f(x)=2sin(\frac{π}{3}-\frac{x}{2})+1$.
(1)求函数f(x)的最小正周期和单调递增区间;
(2)解不等式f(x)>0.

分析 (1)根据正弦函数的周期性、单调性,求得函数f(x)的最小正周期和单调递增区间.
(2)由题意求得sin($\frac{x}{2}$-$\frac{π}{3}$)<$\frac{1}{2}$,再根据正弦函数的图象,求得不等式f(x)>0的解集.

解答 解:(1)根据函数$f(x)=2sin(\frac{π}{3}-\frac{x}{2})+1$=-2sin($\frac{x}{2}$-$\frac{π}{3}$)+1,∴它的周期为$\frac{2π}{\frac{1}{2}}$=4π.
由2kπ+$\frac{π}{2}$≤$\frac{x}{2}$-$\frac{π}{3}$≤2kπ+$\frac{3π}{2}$,解得4kπ+$\frac{5π}{3}$≤x≤4kπ+$\frac{11π}{3}$,
即函数f(x)的单调递增区间为[4kπ+$\frac{5π}{3}$,4kπ+$\frac{11π}{3}$],k∈Z.
(2)不等式f(x)>0,即-2sin($\frac{x}{2}$-$\frac{π}{3}$)+1>0,即sin($\frac{x}{2}$-$\frac{π}{3}$)<$\frac{1}{2}$,
所以 2kπ-$\frac{7π}{6}$<$\frac{x}{2}$-$\frac{π}{3}$<2kπ+$\frac{π}{6}$,即4kπ-$\frac{5π}{3}$<x<4kπ+π,
故不等式的解集为{x|4kπ-$\frac{5π}{3}$<x<4kπ+π,k∈Z}.

点评 本题主要考查正弦函数的周期性、单调性,正弦函数的图象,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.在等差数列{an}中,a9=-36,a16+a17+a18=-36,其前n项和为Sn
(1)求Sn的最小值;
(2)求出Sn<0时n的最大值;
(3)求Tn=|a1|+|a2|+…+|an|.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.下列求导运算正确的是(  )
A.(log2x)′=$\frac{1}{xln2}$B.($\frac{cosx}{x}$)′=$\frac{xsinx-cosx}{x}$
C.(10x)′=10xlgeD.(x+$\sqrt{x}$)′=1-$\frac{1}{2\sqrt{x}}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.△ABC的内角A,B,C所对的边分别为a,b,c,a2+b2-c2=6$\sqrt{3}$-2ab,且C=60°,则△ABC的面积为(  )
A.2B.$\frac{3}{2}$C.$\frac{4}{3}$D.$\frac{5}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.某数学兴趣小组有3名男生和2名女生,从中任选出2名同学参加数学竞赛,那么对立的两个事件为(  )
A.恰有1名女生与恰有2名女生B.至少有1名男生与全是男生
C.至少有1名男生与至少有1名女生D.至少有1名女生与全是男生

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知a>0,($\frac{a}{\sqrt{x}}$-x)6展开式的常数项为240,则${∫}_{-a}^{a}$(x2+x+$\sqrt{4-{x}^{2}}$)dx=$\frac{16}{3}$+2π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若复数z=$\frac{3+ai}{2-i}$(a∈R,i是虚数单位)是纯虚数,则复数z的共轭复数是(  )
A.$\frac{9}{5}$iB.-$\frac{9}{5}$iC.3iD.-3i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.定义在区间I上的函数f(x),若任给x0∈I,均有f(x0)∈I,则称函数f(x)在区间I上“和谐函数”.
(1)已知函数判断f(x)=-2x+5,在区间[-1,3]是否“和谐函数“,并说明理由;
(2)设g(x)=$\frac{1}{2}$x2-x+$\frac{3}{2}$是[1,b]上的“和谐函数”,求常数b的取值范围;
(3)函数h(x)=$\frac{2x+m}{x+2}$在区间[2,3]上“和谐函数”,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.过抛物线C:y2=4x的焦点F作直线l交C于A,B两点,若$|{AF}|=\frac{3}{2}$,则|BF|=3.

查看答案和解析>>

同步练习册答案