分析 (1)求出函数的导数,判断导函数的符合,求出函数的单调区间即可;(2)求出函数的导数,根据函数的单调性证明即可.
解答 解:(1)对f(x)=xex-lnx求导得f′(x)=(x+1)ex-$\frac{1}{x}$,
∵x≥1时,(x+1)ex≥2e,$\frac{1}{x}$≤1,
∴f′(x)≥2e-1>0,
∴f(x)在[1,+∞)递增;
(2)证明:∵f′($\frac{1}{4}$)=1.25${e}^{\frac{1}{4}}$-4<1.25×2-4<0,
f′($\frac{1}{2}$)=$\frac{3}{2}$$\sqrt{e}$-2>$\frac{3}{2}$×1.648-2=0.472>0,
又f′(x)在(0,+∞)递增,
∴f′(x)在(0,+∞)内有唯一1个零点x0,
且(x0+1)${e}^{{x}_{0}}$=$\frac{1}{{x}_{0}}$,x0∈($\frac{1}{4}$,$\frac{1}{2}$),
∴x=x0是f(x)在(0,+∞)上唯一的极小值点,也是最小值值点,
∴f(x)≥f(x0)=x0${e}^{{x}_{0}}$-lnx0=$\frac{1}{{x}_{0}+1}$-lnx0,$\frac{1}{4}$<x0<$\frac{1}{2}$,
∴f(x)在[$\frac{1}{4}$,$\frac{1}{2}$]递减,
∴f(x0)≥f($\frac{1}{2}$)=$\frac{2}{3}$+ln2>$\frac{2}{3}$+0.693>1.369>$\frac{27}{20}$,
∴f(x)>$\frac{27}{20}$.
点评 本题考查了函数的单调性、最值问题,考查导数的应用以及不等式的证明,考查转化思想,是一道中档题.
科目:高中数学 来源: 题型:选择题
| A. | 5 | B. | 4 | C. | 3 | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3 | B. | 4 | C. | 5 | D. | 6 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞$\frac{1}{3}$]∪[3,+∞) | B. | [$\frac{1}{3}$,3] | C. | [$\frac{1}{3}$,1] | D. | [1,3] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com