【题目】已知椭圆
的左右焦点分别为
,若椭圆上一点
满足
,过点
的直线
与椭圆
交于两点
.
(1)求椭圆
的方程;
(2)过点
作
轴的垂线,交椭圆
于
,求证:存在实数
,使得
.
科目:高中数学 来源: 题型:
【题目】已知函数
.
(Ⅰ)求
的单调区间;
(Ⅱ)求
在区间
上的最小值.
【答案】(Ⅰ)
;(Ⅱ)
.
【解析】(Ⅰ)
.
令
,得
.
![]()
与
的情况如上:
所以,
的单调递减区间是
,单调递增区间是
.
(Ⅱ)当
,即
时,函数
在
上单调递增,
所以
在区间
上的最小值为
.
当
,即
时,
由(Ⅰ)知
在
上单调递减,在
上单调递增,
所以
在区间
上的最小值为
.
当
,即
时,函数
在
上单调递减,
所以
在区间
上的最小值为
.
综上,当
时,
的最小值为
;
当
时,
的最小值为
;
当
时,
的最小值为
.
【题型】解答题
【结束】
19
【题目】已知抛物线
的顶点在原点,焦点在坐标轴上,点
为抛物线
上一点.
(1)求
的方程;
(2)若点
在
上,过
作
的两弦
与
,若
,求证: 直线
过定点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的两焦点为
,
,
为椭圆上一点,且到两个焦点的距离之和为6.
(1)求椭圆
的标准方程;
(2)若已知直线
,当
为何值时,直线与椭圆
有公共点?
(3)若
,求
的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
为奇函数,
为偶函数,且
.
(1)求
及
的解析式及定义域;
(2)若关于
的不等式
恒成立,求实数
的取值范围.
(3)如果函数
,若函数
有两个零点,求实数
的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com