【题目】已知函数f(x)=ex+ax,(a∈R),其图象与x轴交于A(x1 , 0),B(x2 , 0)两点,且x1<x2
(1)求a的取值范围;
(2)证明:
;(f′(x)为f(x)的导函数)
(3)设点C在函数f(x)的图象上,且△ABC为等边三角形,记
,求(t﹣1)(a+
)的值.
【答案】
(1)解:∵f(x)=ex+ax,∴f'(x)=ex+a,
若a≥0,则f'(x)>0,则函数f(x)在R上单调递增,这与题设矛盾.
∴a<0,
令f′(x)>0得x>ln(﹣a),令f′(x)<0得x<ln(﹣a),
∴f(x)在(﹣∞,ln(﹣a))上单调递减,在(ln(﹣a),+∞)上单调递增,
∴f(x)有两个零点,
∴fmin(x)=f(ln(﹣a))=﹣a+aln(﹣a),
∴﹣a+aln(﹣a)<0,解得a<﹣e.
(2)解:证明:∵x1,x2是f(x)的零点,∴
,
两式相减得:a=﹣
.
记
=s,则f′(
)=e
﹣
=
[2s﹣(es﹣e﹣s)],
设g(s)=2s﹣(es﹣e﹣s),则g′(s)=2﹣(es+e﹣s)<0,
∴g(s)是减函数,
∴g(s)<g(0)=0,
又
>0,∴f′(
)<0.
∵f′(x)=ex+a是增函数,
∴f′(
)<f′(
)<0
(3)解:由
得
,∴e
=﹣a
,
设P(x0,y0),在等边三角形ABC中,易知
,y0=f(x0)<0,
由等边三角形性质知y0=﹣
,∴y0+
=0,即
,
∴﹣a
+
(x1+x2)+
=0,
∵x1>0,∴
,
∴﹣at+
(t2+1)+
(t2﹣1)=0,即(a+
)t2﹣2at+a﹣
=0,
∴[(a+
)t+
](t﹣1)=0,
∵t>1,∴(a+
)t+
=0,
∴
,
∴
.
【解析】(1)讨论a的符号,判断f(x)的单调性,计算f(x)的极值,根据零点个数得出f(x)的极小值为负数,列出不等式解出a;(2)计算f′(
),根据函数单调性判断f′(
)的符号,根据f′(x)的单调性得出结论;(3)用x1 , x2表示出P点坐标,根据等边三角形的性质列方程化简即可求出t和a的关系,再计算(t﹣1)(a+
)的值.
【考点精析】认真审题,首先需要了解利用导数研究函数的单调性(一般的,函数的单调性与其导数的正负有如下关系: 在某个区间
内,(1)如果
,那么函数
在这个区间单调递增;(2)如果
,那么函数
在这个区间单调递减).
科目:高中数学 来源: 题型:
【题目】已知
,函数
.
(Ⅰ)若
,求函数
的值域;
(Ⅱ)若函数
在
上不单调,求实数
的取值范围;
(Ⅲ)若
是函数
(
为实数)的其中两个零点,且
,求当
变化时,
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知各项均为正数的数列
满足
, 且
,其中
.
(1) 求数列
的通项公式;
(2) 设数列{bn}满足 bn=
,是否存在正整数
,使得b1,bm,bn成等比数列?若存在,求出所有的
的值;若不存在,请说明理由.
(3) 令
,记数列{cn}的前
项和为
,其中
,证明:
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(选修4﹣4:坐标系与参数方程):
在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系,已知射线θ=
与曲线
(t为参数)相交于A,B来两点,则线段AB的中点的直角坐标为 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某种汽车购买时费用为16.9万元,每年应交付保险费、汽油费共0.9万元,汽车的维修保养费为:第一年0.2万元,第二年0.4万元,第三年0.6万元,……依等差数列逐年递增.
(1)求该车使用了3年的总费用(包括购车费用)为多少万元?
(2)设该车使用
年的总费用(包括购车费用)为
),试写出
的表达式;
(3)求这种汽车使用多少年报废最合算(即该车使用多少年平均费用最少).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥
中,
底面
,
是直角梯形,
,
,且
,
是
的中点.![]()
(1)求证:平面
平面
;
(2)若二面角
的余弦值为
,求直线
与平面
所成角的正弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com