已知椭圆
的中心在原点,焦点在
轴上,离心率为
,它的一个顶点恰好是抛物线
的焦点.
(Ⅰ)求椭圆
的方程;
(Ⅱ)过点
的直线
与椭圆
相切
,直线
与
轴交于点
,当
为何值时
的面积有最小值?并求出最小值.
科目:高中数学 来源: 题型:解答题
在平面直角坐标系中,以坐标原点
为几点,
轴的正半轴为极轴建立极坐标系.已知直线
上两点
的极坐标分别为
,圆
的参数方程
(
为参数).
(Ⅰ)设
为线段
的中点,求直线
的平面直角坐标方程;
(Ⅱ)判断直线
与圆
的位置关系.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知动点
到点
的距离与到直线
的距离之比为定值
,记
的轨迹为
.![]()
(1)求
的方程,并画出
的简图;
(2)点
是圆
上第一象限内的任意一点,过
作圆的切线交轨迹
于
,
两点.
(i)证明:
;
(ii)求
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设椭圆![]()
的右焦点为
,直线
与
轴交于点
,若
(其中
为坐标原点).
(I)求椭圆
的方程;
(II)设
是椭圆
上的任意一点,
为圆
的任意一条直径(
、
为直径的两个端点),求
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知中心在坐标原点焦点在
轴上的椭圆C,其长轴长等于4,离心率为
.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)若点
(0,1), 问是否存在直线
与椭圆
交于
两点,且
?若存在,求出
的取值范围,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知抛物线
的焦点为F2,点F1与F2关于坐标原点对称,直线m垂直于
轴(垂足为T),与抛物线交于不同的两点P、Q,且
.
(Ⅰ)求点T的横坐标
;
(Ⅱ)若椭圆C以F1,F2为焦点,且F1,F2及椭圆短轴的一个端点围成的三角形面积为1.
① 求椭圆C的标准方程;
② 过点F2作直线l与椭圆C交于A,B两点,设
,若
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆具有性质:若
是椭圆
:
且
为常数
上关于原点对称的两点,点
是椭圆上的任意一点,若直线
和
的斜率都存在,并分别记为
,
,那么
与
之积是与点
位置无关的定值
.
试对双曲线
且
为常数
写出类似的性质,并加以证明.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com