精英家教网 > 高中数学 > 题目详情

若常数m>0,椭圆x2-2mx+m2y2=0的长轴是短轴的2倍,则m等于

[  ]
A.

B.2

C.2或

D.

答案:C
提示:

  椭圆方程为

  若,则

  若,则


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设椭圆
x2
a2
+
y2
b2
=1
(a>b>0)的长半轴的长等于焦距,且x=4为它的右准线.
(I)求椭圆的方程;
(II)过定点M(m,0)(-2<m<2,m≠0为常数)作斜率为k(k≠0)的直线l与椭圆交于不同的两点A.B,问在x轴上是否存在一点N,使直线NA与NB的倾斜角互补?若存在,求出N点坐标,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

以下五个关于圆锥曲线的命题中:
①平面内到定点A(1,0)和定直线l:x=2的距离之比为
1
2
的点的轨迹方程是
x2
4
+
y2
3
=1

②点P是抛物线y2=2x上的动点,点P在y轴上的射影是M点A的坐标是A(3,6),则|PA|+|PM|的最小值是6;
③平面内到两定点距离之比等于常数λ(λ>0)的点的轨迹是圆;
④若动点M(x,y)满足
(x-1)2+(y+2)2
=|2x-y-4|
,则动点M的轨迹是双曲线;
⑤若过点C(1,1)的直线l交椭圆
x2
4
+
y2
3
=1
于不同的两点A,B,且C是AB的中点,则直线l的方程是3x+4y-7=0.
其中真命题的序号是
 
.(写出所有真命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•安徽模拟)下列四个命题中不正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•闸北区二模)设椭圆C:x2+2y2=2b2(常数b>0)的左右焦点分别为F1,F2,M,N是直线l:x=2b上的两个动点,
F1M
F2N
=0

(1)若|
F1M
|=|
F2N
|=2
5
,求b的值;
(2)求|MN|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•宝鸡模拟)平面内点P与两定点A1(-a,0),A2(a,0)(其中a>0)连线的斜率之积为非零常数m,已知点P的轨迹是椭圆C,离心率是
2
2

(1)求m的值;
(2)设椭圆的焦点在x轴上,若过点(2,3)且斜率为-1的直线被椭圆C所截线段的长度为
20
3
3
,求此椭圆的焦点坐标.

查看答案和解析>>

同步练习册答案