【题目】某人准备在一块占地面积为1800平方米的矩形地块中间建三个矩形温室大棚,大棚周围均是宽为1米的小路(如图所示),大棚占地面积为
平方米,其中
.
![]()
(1)试用
表示
;
(2)若要使
的值最大,则
的值各为多少?
【答案】(1)S=1808-3x-
y.(2)当x=40,y=45时,S取得最大值.
【解析】
本试题主要是考察了函数在实际生活中的运用,借助于不等式的思想或者是函数单调性的思想,求解最值的实际应用。
(1)根据已知条件,设出变量,然后借助于面积关系,得到解析式。
(2)根据第一问中的结论,分析函数的性质,或者运用均值不等式的思想,求解得到最值。
解: (1)由题可得:xy=1800,b=2a
则y=a+b+3=3a+3, ··········· 4分
S=(x-2)a +(x-3)b=(3x-8)a=(3x-8)
=1808-3x-
y. ········ 8分
(2) S=1808-3x-
y=1808-3x-
×
=1808-3 (x+
) ······· 10分
≤1808-3×2
=1808-240=1568, ·········· 12分
当且仅当x=
,即x=40时取等号,S取得最大值.此时y=
=45,
所以当x=40,y=45时,S取得最大值. 15分
科目:高中数学 来源: 题型:
【题目】已知对任意平面向量
,把
绕其起点沿逆时针方向旋转
角得到向量
,
,叫做把点
绕点
逆时针方向旋转
角得到点
.
(1)已知平面内点
,点
,把点
绕点
顺时针方向旋转
后得到点
,求点
的坐标;
(2)设平面内曲线
上的每一点绕坐标原点沿逆时针方向旋转
后得到的点的轨迹方程是曲线
,求原来曲线
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
:
的左、右焦点分别为
,
,过
且垂直于
轴的焦点弦的弦长为
,过
的直线
交椭圆
于
,
两点,且
的周长为
.
(1)求椭圆
的方程;
(2)已知直线
,
互相垂直,直线
过
且与椭圆
交于点
,
两点,直线
过
且与椭圆
交于
,
两点.求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,边a、b、c分别是角A、B、C的对边,且满足bcosC=(3a-c)cosB
(1)求cosB
(2)若△ABC的面积为4
,b=4
,求△ABC的周长
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知四棱锥
中,底面
是菱形,侧面
平面
,且
,
,
.
![]()
(Ⅰ)证明:
平面
;
(Ⅱ)若点
在线段
上,且
,试问:在
上是否存在一点
,使
面
?若存在,求出
的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知正项数列{an} 为等比数列,等差数列{bn} 的前n 项和为Sn (n∈N* ),且满足:S13=208,S9﹣S7=41,a1=b2,a3=b3.
(1)求数列{an},{bn} 的通项公式;
(2)设Tn=a1b1+a2b2+…+anbn (n∈N* ),求Tn;
(3)设
,是否存在正整数m,使得cm·cm+1·cm+2+8=3(cm+cm+1+cm+2).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某投资公司计划投资
两种金融产品,根据市场调查与预测,
产品的利润
与投资金额
的函数关系为
,
产品的利润
与投资金额
的函数关系为
(注:利润与投资金额单位:万元).
(1)该公司现有100万元资金,并计划全部投入
两种产品中,其中
万元资金投入
产品,试把
两种产品利润总和
表示为
的函数,并写出定义域;
(2)怎样分配这100万元资金,才能使公司的利润总和
获得最大?其最大利润总和为多少万元.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2016年时红军长征胜利80周年,某市电视台举办纪念红军长征胜利80周年知识问答,宣传长征精神.首先在甲、乙、丙、丁四个不同的公园进行支持签名活动,其次在各公园签名的人中按分层抽样的方式抽取10名幸运之星,每人获得一个纪念品,其数据表格如下:
![]()
(Ⅰ)求此活动中各公园幸运之星的人数;
(Ⅱ)从乙和丙公园的幸运之星中任选两人接受电视台记者的采访,求这两人均来自乙公园的概率;
(Ⅲ)电视台记者对乙公园的签名人进行了是否有兴趣研究“红军长征”历史的问卷调查,统计结果如下(单位:人):
![]()
据此判断能否在犯错误的概率不超过0.01的前提下认为有兴趣研究“红军长征”历史与性别有关.
附临界值表及公式:
,其中![]()
| 0.100 | 0.050 | 0.010 | 0.001 |
| 2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com