8£®ÒÔ×ø±êÔ­µãOΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖáµÄ¼«×ø±êϵÖУ¬ÇúÏßC1µÄ¼«×ø±ê·½³ÌΪ¦Ñ=1£¬ÇúÏßC2µÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=-1+\frac{{\sqrt{2}}}{2}t\\ y=1+\frac{{\sqrt{2}}}{2}t\end{array}$£¨tΪ²ÎÊý£©£®
£¨1£©ÇóÇúÏßC1Éϵĵ㵽ÇúÏßC2µÄ¾àÀëµÄ×îСֵ£»
£¨2£©°ÑÇúÏßC1Éϵĸ÷µãµÄºá×ø±êÀ©´óΪԭÀ´µÄ2±¶£¬×Ý×ø±êÀ©´óÔ­À´µÄ$\sqrt{3}$±¶£¬µÃµ½ÇúÏßC1¡ä£¬ÉèP£¨-1£¬1£©£¬ÇúÏßC2ÓëC1¡ä½»ÓÚA£¬BÁ½µã£¬Çó|PA|+|PB|µÄÖµ£®

·ÖÎö £¨1£©¸ù¾Ýº¯ÊýµÄ¼«×ø±ê·½³ÌÇó³öº¯ÊýµÄÆÕͨ·½³Ì¼´¿É£¬¸ù¾Ý²ÎÊý·½³ÌÏûÈ¥²ÎÊýÇó³öC2µÄÆÕͨ·½³Ì¼´¿É£¬Çó³öµãµ½Ö±ÏߵľàÀë¼´¿É£»
£¨2£©Çó³ö${{C}_{1}}^{¡ä}$µÄ·½³Ì£¬ÁªÁ¢·½³Ì×飬Çó³ö|PA|+|PB|µÄÖµ¼´¿É£®

½â´ð ½â£º£¨1£©ÇúÏßC1µÄ¼«×ø±ê·½³ÌΪ¦Ñ=1£¬
¹ÊC1Ϊ£ºx2+y2=1£¬Ô²ÐÄÊÇ£¨0£¬0£©°ë¾¶ÊÇ1£¬
ÇúÏßC2µÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=-1+\frac{{\sqrt{2}}}{2}t\\ y=1+\frac{{\sqrt{2}}}{2}t\end{array}$£¨tΪ²ÎÊý£©£¬
¹ÊC2£ºy=x+2£¬
Ô²Ðĵ½Ö±ÏߵľàÀëd=$\frac{|2|}{\sqrt{2}}$=$\sqrt{2}$£¬
¹ÊC1Éϵĵ㵽C2µÄ×îС¾àÀëÊÇ$\sqrt{2}$-1£»
£¨2£©ÉìËõ±ä»»Îª$\left\{\begin{array}{l}{x¡ä=2x}\\{y¡ä=\sqrt{3}y}\end{array}\right.$£¬
¹Ê${{C}_{1}}^{¡ä}$£º$\frac{{{x}^{¡ä}}^{2}}{4}$+$\frac{{{y}^{¡ä}}^{2}}{3}$=1£¬
½«C2ºÍ${{C}_{1}}^{¡ä}$ÁªÁ¢£¬µÃ7t2+2$\sqrt{2}$t-10=0£¬
¡ßt1t2£¼0£¬
¡à|PA|+|PB|=|t1|+|t2|=|t1-t2|=$\frac{12\sqrt{2}}{7}$£®

µãÆÀ ±¾Ì⿼²éÁ˲ÎÊý·½³Ì¡¢¼«×ø±ê·½³ÌÒÔ¼°ÆÕͨ·½³ÌµÄÖµ£¬¿¼²éµãµ½Ö±ÏߵľàÀ빫ʽÒÔ¼°×ø±êµÄÉìËõ±ä»»£¬ÊÇÒ»µÀÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®£¨x2-$\frac{1}{x}$£©6µÄÕ¹¿ªÊ½£¬x6µÄϵÊýΪ£¨¡¡¡¡£©
A£®15B£®6C£®-6D£®-15

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®ÒÑÖªÕýÏîÊýÁÐ{an}Êǹ«²îΪ2µÄµÈ²îÊýÁУ¬ÊýÁÐ{bn}Âú×ãb1=1£¬b2=$\frac{5}{3}$£¬ÇÒbn+1-bn=$\frac{2}{{a}_{n}{a}_{n+1}}$£®
£¨¢ñ£©ÇóÊýÁÐ{an}¡¢{bn}µÄͨÏʽ£»
£¨¢ò£©Éècn=$\frac{1}{£¨2-{b}_{n}£©•{2}^{{a}_{n}}}$£¬ÇóÊýÁÐ{cn}µÄǰnÏîºÍTn£¬²¢Ö¤Ã÷$\frac{1}{2}$¡ÜTn£¼$\frac{10}{9}$¶ÔÒ»ÇÐn¡ÊN*¶¼³ÉÁ¢£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®ÉèÍÖÔ²$\frac{x^2}{a^2}+\frac{y^2}{4}=1$£¨a£¾2£©µÄÀëÐÄÂÊΪ$\frac{{\sqrt{3}}}{3}$£®Ð±ÂÊΪkµÄÖ±Ïßl¹ýµãE£¨0£¬1£©£¬ÇÒÓëÍÖÔ²ÏཻÓÚC£¬DÁ½µã£®
£¨1£©ÇóÍÖÔ²·½³Ì£®
£¨2£©ÈôÖ±ÏßlÓëxÖáÏཻÓÚµãG£¬ÇÒ$\overline{GC}=\overline{DE}$£¬ÇókµÄÖµ£®
£¨3£©Çó¡÷CODµÄÃæ»ýµÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®ÔÚ¡÷ABCÖУ¬½ÇA£¬B£¬CµÄ¶Ô±ß·Ö±ðΪa£¬b£¬c£¬ÇÒ$\frac{b}{a}cosC=£¨{3-\frac{c}{a}}£©cosB$£®
£¨1£©ÇósinBµÄÖµ£»
£¨2£©ÈôDΪACµÄÖе㣬ÇÒBD=1£¬Çó¡÷ABDÃæ»ýµÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®ÒÑÖªÈñ½Ç¦Á£¬¦ÂÂú×ãsin¦Á=$\frac{{\sqrt{10}}}{10}£¬cos¦Â=\frac{{2\sqrt{5}}}{5}$£¬Ôò¦Á+¦ÂµÄֵΪ£¨¡¡¡¡£©
A£®$\frac{3¦Ð}{4}$B£®$\frac{¦Ð}{4}$C£®$\frac{¦Ð}{6}$D£®$\frac{3¦Ð}{4}$»ò$\frac{¦Ð}{4}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®ÒÑÖªÔÚÌÝÐÎABCDÖУ¬¡ÏADC=$\frac{¦Ð}{2}$£¬AB¡ÎCD£¬PC¡ÍÆ½ÃæABCD£¬CP=AB=2DC=2DA£¬µãEÔÚBPÉÏ£¬ÇÒEB=2PE£®
£¨1£©ÇóÖ¤£ºDP¡ÎÆ½ÃæACE£»
£¨2£©Çó¶þÃæ½ÇE-AC-PµÄÓàÏÒÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®Óмס¢ÒÒ¡¢±û¡¢¶¡¡¢Îì5λͬѧ£¬Çó£º
£¨1£©5λͬѧվ³ÉÒ»ÅÅ£¬¼×¡¢Îì²»ÔÚÁ½¶ËÓжàÉÙÖÖ²»Í¬µÄÅÅ·¨£¿
£¨2£©5λͬѧվ³ÉÒ»ÅÅ£¬ÒªÇó¼×ÒÒ±ØÐëÏàÁÚ£¬±û¶¡²»ÄÜÏàÁÚ£¬ÓжàÉÙÖÖ²»Í¬µÄÅÅ·¨£¿
£¨3£©½«5λͬѧ·ÖÅäµ½Èý¸ö°à£¬Ã¿°àÖÁÉÙÒ»ÈË£¬¹²ÓжàÉÙÖÖ²»Í¬µÄ·ÖÅä·½·¨£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®¡÷ABCÖУ¬D£¬E£¬F·Ö±ðÊÇAB£¬BC£¬ACµÄÖе㣬Ôò$\overrightarrow{DF}$=£¨¡¡¡¡£©
A£®$\overrightarrow{EF}+\overrightarrow{ED}$B£®$\overrightarrow{EF}-\overrightarrow{DE}$C£®$\overrightarrow{EF}+\overrightarrow{AD}$D£®$\overrightarrow{EF}+\overrightarrow{AF}$

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸