精英家教网 > 高中数学 > 题目详情
若点P是有共同焦点的椭圆C1和双曲线C2的一个交点,F1、F2分别是它们的左、右焦点,设椭圆离心率为e1,双曲线离心率为e2,若,则=( )
A.1
B.2
C.3
D.4
【答案】分析:由题设中的条件,设焦距为2c,椭圆的长轴长2a,双曲线的实轴长为2m,根据椭圆和双曲线的性质以及勾弦定理建立方程,联立可得m,a,c的等式,整理即可得到结论,
解答:解:由题意设焦距为2c,椭圆的长轴长2a,双曲线的实轴长为2m,不妨令P在双曲线的右支上
由双曲线的定义|PF1|-|PF2|=2m  ①
由椭圆的定义|PF1|+|PF2|=2a  ②
,故∠F1PF2=90,故|PF1|2+|PF2|2=4c2   ③
2+②2得|PF1|2+|PF2|2=2a2+2m2
将④代入③得a2+m2=2c2,即=2
故选B.
点评:本题考查圆锥曲线的共同特征,考查通过椭圆与双曲线的定义焦点三角形中用勾弦定理建立三个方程联立求椭圆离心率e1与双曲线心率e2满足的关系式,解决本题的关键是根据所得出的条件灵活变形,凑出两曲线离心率所满足的方程来.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知抛物线、椭圆和双曲线都经过点M(1,2),它们在x轴上有共同焦点,椭圆和双曲线的对称轴是坐标轴,抛物线的顶点为坐标原点.
(1)求这三条曲线的方程;
(2)已知动直线l过点P(3,0),交抛物线于A,B两点,是否存在垂直于x轴的直线l′被以AP为直径的圆截得的弦长为定值?若存在,求出L′的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的短轴长为2,且与抛物线y2=4
3
x
有共同的焦点,椭圆C的左顶点为A,右顶点为B,点P是椭圆C上位于x轴上方的动点,直线AP,BP与直线y=3分别交于G,H两点.
(I)求椭圆C的方程;
(Ⅱ)求线段GH的长度的最小值;
(Ⅲ)在线段GH的长度取得最小值时,椭圆C上是否存在一点T,使得△TPA的面积为1,若存在求出点T的坐标,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

若点P是有共同焦点的椭圆C1和双曲线C2的一个交点,F1、F2分别是它们的左、右焦点,设椭圆离心率为e1,双曲线离心率为e2,若
PF1
PF2
=0
,则
1
e
2
1
+
1
e
2
2
=(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若点P是有共同焦点的椭圆C1和双曲线C2的一个交点,F1、F2分别是它们的左、右焦点,设椭圆离心率为e1,双曲线离心率为e2,若
PF1
PF2
=0
,则
1
e21
+
1
e22
=(  )
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案