精英家教网 > 高中数学 > 题目详情
已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的短轴长为2,且与抛物线y2=4
3
x
有共同的焦点,椭圆C的左顶点为A,右顶点为B,点P是椭圆C上位于x轴上方的动点,直线AP,BP与直线y=3分别交于G,H两点.
(I)求椭圆C的方程;
(Ⅱ)求线段GH的长度的最小值;
(Ⅲ)在线段GH的长度取得最小值时,椭圆C上是否存在一点T,使得△TPA的面积为1,若存在求出点T的坐标,若不存在,说明理由.
分析:(I)由椭圆和抛物线y2=4
3
x
有共同的焦点,求出抛物线的焦点坐标,根据a2=b2+c2,即可求得椭圆C的方程;
(Ⅱ)根据(I)写出点A,B,设点P和直线AP,BP的方程,并且与直线y=3分联立,求出G,H两点,根据两点间的距离公式,根据求函数的最值方法可求;
(Ⅲ)由(Ⅱ)可知,当GH的长度取最小值时,可求直线AP的方程及点P,若椭圆C上存在点T,使得△TPA的面积等于1,则点T到直线AP的距离是定值,利用点到直线的距离公式可解.
解答:解:(I)由已知得,抛物线的焦点为(
3
,0)
,则c=
3
,又b=1.
由a2-b2=c2,可得a2=4.
故椭圆C的方程为
x2
4
+y2=1

(Ⅱ)直线AP的斜率k显然存在,且k>0,故可设直线AP的方程为y=k(x+2),从而G(
3
k
-2,3)

y=k(x+2)
x2
4
+y2=1.
得(1+4k2)x2+16k2x+16k2-4=0.
设P(x1,y1),则(-2)x1=
16k2-4
1+4k2
.所以x1=
2-8k2
1+4k2
,从而y1=
4k
1+4k2

P(
2-8k2
1+4k2
4k
1+4k2
)
,又B(2,0),
则直线PB的斜率为-
1
4k

y=-
1
4k
(x-2)
y=3.
x=-12k+2
y=3.

所以H(-12k+2,3).
|GH|=|
3
k
-2+12k-2|=|
3
k
+12k-4|

又k>0,
3
k
+12k≥2
3
k
•12k
=12

当且仅当
3
k
=12k
,即k=
1
2
时等号成立.
所以当k=
1
2
时,线段GH的长度取最小值8.
(Ⅲ)由(Ⅱ)可知,当GH的长度取最小值时,k=
1
2

则直线AP的方程为x-2y+2=0,此时P(0,1),|AP|=
5

若椭圆C上存在点T,使得△TPA的面积等于1,则点T到直线AP的距离等于
2
5
5

所以T在平行于AP且与AP距离等于
2
5
5
的直线l上.
设直线l:y=
1
2
x+t

则由
y=
1
2
x+t
x2
4
+y2=1.
得x2+2tx+2t2-2=0.
△=4t2-8(t2-1)≥0.即t2≤2.
由平行线间的距离公式,得
|2-2t|
5
=
2
5
5

解得t=0或t=2(舍去).
可求得T(
2
2
2
)
T(-
2
,-
2
2
)
点评:此题是个难题.本题考查了椭圆的定义、椭圆与双曲线的标准方程、直线与圆锥曲线的位置关系,是一道综合性的试题,考查了学生综合运用知识解决问题的能力.其中问题(III)是一个开放性问题,考查了同学们观察、推理以及创造性地分析问题、解决问题的能力,
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为
1
2
,且经过点P(1,
3
2
)

(1)求椭圆C的方程;
(2)设F是椭圆C的左焦,判断以PF为直径的圆与以椭圆长轴为直径的圆的位置关系,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的短轴长为2
3
,右焦点F与抛物线y2=4x的焦点重合,O为坐标原点.
(1)求椭圆C的方程;
(2)设A、B是椭圆C上的不同两点,点D(-4,0),且满足
DA
DB
,若λ∈[
3
8
1
2
],求直线AB的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)经过点A(1,
3
2
),且离心率e=
3
2

(Ⅰ)求椭圆C的方程;
(Ⅱ)过点B(-1,0)能否作出直线l,使l与椭圆C交于M、N两点,且以MN为直径的圆经过坐标原点O.若存在,求出直线l的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•房山区二模)已知椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)的长轴长是4,离心率为
1
2

(Ⅰ)求椭圆方程;
(Ⅱ)设过点P(0,-2)的直线l交椭圆于M,N两点,且M,N不与椭圆的顶点重合,若以MN为直径的圆过椭圆C的右顶点A,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的短轴长为2,离心率为
2
2
,设过右焦点的直线l与椭圆C交于不同的两点A,B,过A,B作直线x=2的垂线AP,BQ,垂足分别为P,Q.记λ=
AP+BQ
PQ
,若直线l的斜率k≥
3
,则λ的取值范围为
 

查看答案和解析>>

同步练习册答案