精英家教网 > 高中数学 > 题目详情
如图所示,边长为2的等边△PCD所在的平面垂直于矩形ABCD所在的平面,BC=2,M为BC的中点.
(1)证明:AM⊥PM;
(2)求二面角P-AM-D的大小.

【答案】分析:(1)利用勾股定理的逆定理、线面与面面垂直的判定和性质定理即可证明;
(2)利用三垂线定理或线面垂直的性质定理及二面角的定义、正切函数即可得出.
解答:(1)证明:如图所示,取CD的中点E,连接PE,EM,EA,
∵△PCD为正三角形,
∴PE⊥CD,PE=PDsin∠PDE=2sin60°=
∵平面PCD⊥平面ABCD,
∴PE⊥平面ABCD,而AM?平面ABCD,∴PE⊥AM.
∵四边形ABCD是矩形,
∴△ADE,△ECM,△ABM均为直角三角形,
由勾股定理可求得EM=,AM=,AE=3,
∴EM2+AM2=AE2.∴AM⊥EM.
又PE∩EM=E,∴AM⊥平面PEM,∴AM⊥PM.
(2)解:由(1)可知:EM⊥AM,PM⊥AM,
∴∠PME是二面角P-AM-D的平面角.
在Rt△PEM中,tan∠PME===1,∴∠PME=45°.
∴二面角P-AM-D的大小为45°.
点评:熟练掌握线面与面面垂直的判定和性质定理、三垂线定理、二面角的定义、正切函数及勾股定理的逆定理是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图所示,边长为2的等边△PCD所在的平面垂直于矩形ABCD所在的平面,BC=2
2
,M为BC的中点.
(1)证明:AM⊥PM;
(2)求二面角P-AM-D的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图所示:边长为2的正方形ABFC和高为2的直角梯形ADEF所在的平面互相垂直且DE=
2
,ED∥AF且∠DAF=90°.
(1)求BD和面BEF所成的角的余弦;
(2)线段EF上是否存在点P使过P、A、C三点的平面和直线DB垂直,若存在,求EP与PF的比值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(08年安徽皖南八校联考)(本小题满分14分)

如图所示,边长为2的等边△所在的平面垂直于矩形所在的平面,的中点.

(1)证明:

(2)求二面角的大小;

(3)求点到平面的距离.

 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示:边长为2的正方形ABFC和高为2的直角梯形ADEF所在的平面互相垂直且DE=ED//AF且∠DAF=90°。

   (1)求BD和面BEF所成的角的余弦;

 
   (2)线段EF上是否存在点P使过P、A、C三点的平面和直线DB垂直,若存在,求EPPF的比值;若不存在,说明理由。

1,3,5

 
 


查看答案和解析>>

科目:高中数学 来源:2012-2013学年山东省高三第四次(4月)周测文科数学试卷(解析版) 题型:选择题

如图所示,边长为2的正方形中有一封闭曲线围成的阴影区域,在正方形中随机撒一粒豆子,它落在阴影区域内的概率是,则阴影区域的面积为(   )

  

A.             B.              C.              D.无法计算

 

查看答案和解析>>

同步练习册答案