【题目】已知函数
,其中
,
.
(1)若
,求函数
的单调减区间;
(2)若数
的极值点是
,求b、c的值;
(3)若
,曲线
在
处的切线斜率为
,求证:
的极大值大于
.
【答案】(1)单调减区间为
(2)
,
(3)证明见解析
【解析】
(1)计算导数
,由
确定减区间.
(2)由
,
可求得
,注意
即可;
(3)由所以
,得
.由于
,则
,极大值点必是
的较小根,设其为
,则有
,再结合
,
可求得
的取值范围,计算
,可利用换元法及导数的知识得证
.
(1)因为
,
所以
,
故
.
令
,即
,
解得
,
所以函数
的单调减区间为
.
(2)因为
,
所以
.
因为
是函数
的极值点,
所以
是方程
的实数根,
故
,解得
或
,
又因为
,所以
,
.
(3)若
,由(2)知
,
则
.
因为曲线
在
处的切线斜率为
,
所以
,即
.
又因为
,所以
.
设
的较小的根为
,
则
,即
.
由
及
,得
,解得
,
则
的极大值为![]()
令
,则
.
所以
,
故
,在
上恒成立,
所以
,在
上为减函数,
故
,即
的极大值大于
.
科目:高中数学 来源: 题型:
【题目】如图,某中学甲、乙两班共有25名学生报名参加了一项 测试.这25位学生的考分编成的茎叶图,其中有一个数据因电脑操作员不小心删掉了(这里暂用x来表示),但他清楚地记得两班学生成绩的中位数相同.
![]()
(Ⅰ)求这两个班学生成绩的中位数及x的值;
(Ⅱ)如果将这些成绩分为“优秀”(得分在175分 以上,包括175分)和“过关”,若学校再从这两个班获得“优秀”成绩的考生中选出3名代表学校参加比赛,求这3人中甲班至多有一人入选的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点
在椭圆
:
上,
是椭圆的一个焦点.
(Ⅰ)求椭圆
的方程;
(Ⅱ)椭圆C上不与
点重合的两点
,
关于原点O对称,直线
,
分别交
轴于
,
两点.求证:以
为直径的圆被直线
截得的弦长是定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某生物公司将A型病毒疫苗用100只小白鼠进行科研和临床试验,得到统计数据如表:
未感染病毒 | 感染病毒 | 总计 | |
未注射 | 10 | x | A |
注射 | 40 | y | B |
总计 | 50 | 50 | 100 |
现从所有试验的小白鼠中任取一只,取得注射疫苗小白鼠的概率为
.
(1)能否有99.9%的把握认为注射此型号疫苗有效?
(2)现从感染病毒的小白鼠中任取3只进行病理分析,记已注射疫苗的小白鼠只数为ξ,求ξ的分布列和数学期望.
附:![]()
P(K2≥k0) | 0.10 | 0.010 | 0.001 |
k0 | 2.706 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某高三理科班共有60名同学参加某次考试,从中随机挑选出5名同学,他们的数学成绩x与物理成绩y如下表:
![]()
数据表明y与x之间有较强的线性关系.
(1)求y关于x的线性回归方程;
(2)该班一名同学的数学成绩为110分,利用(1)中的回归方程,估计该同学的物理成绩;
(3)本次考试中,规定数学成绩达到125分为优秀,物理成绩达到100分为优秀.若该班数学优秀率与物理优秀率分别为50%和60%,且除去抽走的5名同学外,剩下的同学中数学优秀但物理不优秀的同学共有5人.能否在犯错误概率不超过0.01的前提下认为数学优秀与物理优秀有关?
参考数据:回归直线的系数
.
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】写算,是一种格子乘法,也是笔算乘法的一种,用以区别筹算与珠算,它由明代数学家吴敬在其撰写的《九章算法比类大全》一书中提出,是从天元式的乘法演变而来.例如计算
,将被乘数89计入上行,乘数65计入右行.然后以乘数65的每位数字乘被乘数89的每位数字,将结果计入相应的格子中,最后从右下方开始按斜行加起来,满十向上斜行进一,如图,即得5785.类比此法画出
的表格,若从表内(表周边数据不算在内)任取一数,则恰取到奇数的概率是( )
![]()
A.
B.
C.
D.![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com