【题目】设全集为R,集合A={x|
≥0},B={x|﹣2≤x<0},则(RA)∩B=( )
A.(﹣1,0)
B.[﹣1,0)
C.[﹣2,﹣1]
D.[﹣2,﹣1)
科目:高中数学 来源: 题型:
【题目】甲乙两人同时生产内径为
的一种零件,为了对两人的生产质量进行评比,从他们生产的零件中各抽出 5 件(单位:
) ,
甲:25.44,25.43, 25.41,25.39,25.38
乙:25.41,25.42, 25.41,25.39,25.42.
从生产的零件内径的尺寸看、谁生产的零件质量较高.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥
中,底面
为矩形,平面
平面
,
,
,
,
为
中点.
![]()
(Ⅰ)求证:
平面
;
(Ⅱ)求二面角
的余弦值;
(Ⅲ)在棱
上是否存在点
,使得
?若存在,求
的值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知一动点
,
到点
的距离减去它到
轴距离的差都是
.
(
)求动点
的轨迹方程.
(
)设动点
的轨迹为
,已知定点
、
,直线
、
与轨迹
的另一个交点分别为
、
.
(i)点
能否为线段
的中点,若能,求出直线
的方程,若不能,说明理由.
(ii)求证:直线
过定点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,椭圆
的左、右焦点为
,右顶点为
,上顶点为
,若
,
与
轴垂直,且
.
(1)求椭圆方程;
(2)过点
且不垂直于坐标轴的直线与椭圆交于
两点,已知点
,当
时,求满足
的直线
的斜率
的取值范围.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】椭圆
的离心率是
,过点
的动直线
与椭圆相交于
两点,当直线
与
轴平行时,直线
被椭圆
截得的线段长为
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)在
轴上是否存在异于点
的定点
,使得直线
变化时,总有
?若存在,求出点
的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】统计表明,家庭的月理财投入
(单位:千元)与月收入
(单位:千元)之间具有线性相关关系.某银行随机抽取5个家庭,获得第
(
)个家庭的月理财投入
与月收入
的数据资料,经计算得
.
(1)求
关于
的回归方程
;
(2)判断
与
之间是正相关还是负相关;
(3)若某家庭月理财投入为5千元,预测该家庭的月收入.
附:回归方程的斜率与截距的最小二乘估计公式分别为:
,其中
为样本平均值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知F1 , F2分别为椭圆C:
+
=1(a>b>0)的左、右两个焦点,椭圆上点M(
,
)到F1、F2两点的距离之和等于4.
(1)求椭圆C的方程;
(2)已知过右焦点且垂直于x轴的直线与椭圆交于点N(点N在第一象限),E,F是椭圆C上的两个动点,如果kEN+KFN=0,证明直线EF的斜率为定值,并求出这个定值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com