精英家教网 > 高中数学 > 题目详情

【题目】在抗击新冠肺炎的疫情中,某医院从3位女医生,5位男医生中选出4人参加援鄂医疗队,至少有一位女医生入选,其中女医生甲和男医生乙不能同时参加,则不同的选法共有种______(用数字填写答案).

【答案】50

【解析】

以女医生的人数进行分类.1位女医生时,有3位男医生,又分为两种情况:有女医生甲和不含女医生甲;有2位女医生时,有2位男医生,又分为两种情况:有女医生甲和不含女医生甲;有3位女医生时,有1位男医生.根据分类计数原理可得不同的选法种数.

以女医生的人数进行分类.

1位女医生时,有3位男医生,有种选法;

2位女医生时,有2位男医生,有种选法;

3位女医生时,有1位男医生,有种选法.

根据分类计数原理可得,共有种选法.

故答案为:50.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的左右焦点为,离心率为,过点且垂直于轴的直线被椭圆截得的弦长为1.

1)求椭圆的方程;

2)若直线交椭圆于点两点,与线段和椭圆短轴分别交于两个不同点,且,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程为为参数),直线过原点且倾斜角为,以原点为极点,轴的正半轴为极轴建立极坐标系.

1)求曲线和直线的极坐标方程;

2)若相交于不同的两点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数对任意的都有,且的最大值为,下列四个结论:①的一个极值点;②若为奇函数,则的最小正周期;③若为偶函数,则上单调递增;④的取值范围是.其中一定正确的结论编号是(

A.①②B.①③C.①②④D.②③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以直角坐标系的原点为极点,x轴的非负半轴为极轴建立极坐标系,并且在两种坐标系中取相同的长度单位.若将曲线为参数)上每一点的横坐标变为原来的(纵坐标不变),然后将所得图象向右平移2个单位,再向上平移3个单位得到曲线C.直线l的极坐标方程为.

1)求曲线C的普通方程;

2)设直线l与曲线C交于AB两点,与x轴交于点P,线段AB的中点为M,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知点,动点满足直线MP与直线NP的斜率之积为.记动点P的轨迹为曲线C.

1)求曲线C的方程,并说明C是什么曲线;

2)过点作直线与曲线C交于不同的两点AB,试问在x轴上是否存在定点Q,使得直线QA与直线QB恰好关于x轴对称?若存在,求出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知椭圆的右焦点为,上顶点为,点在椭圆.

1)求椭圆的标准方程;

2)动直线l与椭圆相交于两点,与轴相交于点,与轴的正半轴相交于点为线段的中点,若为定值,请判断直线l是否过定点,求实数的值,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】过圆上的点作圆的切线过点作切线的垂线若直线过抛物线的焦点.

(1)求直线与抛物线的方程

2若直线与抛物线交于点在抛物线的准线上的面积.

查看答案和解析>>

同步练习册答案