精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,已知点,动点满足直线MP与直线NP的斜率之积为.记动点P的轨迹为曲线C.

1)求曲线C的方程,并说明C是什么曲线;

2)过点作直线与曲线C交于不同的两点AB,试问在x轴上是否存在定点Q,使得直线QA与直线QB恰好关于x轴对称?若存在,求出点Q的坐标;若不存在,请说明理由.

【答案】1C为中心在坐标原点,焦点在轴上的椭圆,不含左右顶点;(2)存在,

【解析】

(1)写出斜率,根据斜率之积为建立方程,化简即可;

(2)设直线的方程为,与椭圆C的方程联立整理得,设,定点(依题意.由根与系数的关系可得,,由直线与直线恰好关于x轴对称,则直线与直线的斜率互为相反数,代入可得.

1)由题设可得,则,化简得.

所以C为中心在坐标原点,焦点在X轴上的椭圆,不含左右顶点.

2)存在定点,满足直线QA与直线QB恰好关于x轴对称,

由题设知,直线l的斜率不为0,设直线的方程为

与椭圆C的方程联立整理得,设,定点(依题意.

由根与系数的关系可得,

直线与直线恰好关于x轴对称,则直线与直线的斜率互为相反数,

所以,即.

,所以整理得.

从而可得即,

所以当,即时,直线与直线恰好关于x轴对称

所以,在轴上存在点,满足直线与直线恰好关于x轴对称

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在直角坐标系.xOy中,曲线C1的参数方程为 为参数),以原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=4sinθ.

1)求曲线C1的普通方程和C2的直角坐标方程;

2)已知曲线C2的极坐标方程为,点A是曲线C3C1的交点,点B是曲线C3C2的交点,且AB均异于原点O,且|AB|=4,求α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中国农业银行广元分行发行金穗广元·剑门关旅游卡是以游广元、知广元、爱广元、共享和谐广元为主题活动的一项经济性和公益性相结合的重大举措,以最优惠的价格惠及广元户籍市民、浙江及黑龙江援建省群众、省内援建市市民,凡上述对象均可办理此卡,本人凭此卡及本人身份证一年内(期满后可重新充值办理)在广元市范围内可无限次游览所有售门票景区景点,如:剑门关、朝天明月峡、旺苍鼓城山七里峡、青川唐家河、广元皇泽寺、苍溪梨博园、昭化古城等,现有浙江及黑龙江援建省群众甲乙两人准备到广元旅游(同游),他们决定游览上面个景点,首先游览剑门关但不能最后游览朝天明月峡的游览顺序有( )种.

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在抗击新冠肺炎的疫情中,某医院从3位女医生,5位男医生中选出4人参加援鄂医疗队,至少有一位女医生入选,其中女医生甲和男医生乙不能同时参加,则不同的选法共有种______(用数字填写答案).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,矩形中, 边上,且,将沿折到的位置,使得平面平面.

(Ⅰ)求证:

(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知SAB是边长为2的等边三角形,∠ACB45°,当三棱锥SABC体积最大时,其外接球的表面积为(  )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线经过点,两个焦点为

1)求的方程;

2)设上一点,直线与直线相交于点,与直线相交于点,证明:当点在上移动时,为定值,并求此定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知椭圆过点,且离心率.

1)求椭圆的方程;

2)直线的斜率为,直线与椭圆交于两点,求的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某保险公司为客户定制了5个险种:甲,一年期短险;乙,两全保险;丙,理财类保险;丁,定期寿险:戊,重大疾病保险,各种保险按相关约定进行参保与理赔.该保险公司对5个险种参保客户进行抽样调查,得出如下的统计图例,以下四个选项错误的是(

A.54周岁以上参保人数最少B.1829周岁人群参保总费用最少

C.丁险种更受参保人青睐D.30周岁以上的人群约占参保人群的80%

查看答案和解析>>

同步练习册答案