【题目】袋子中有四个小球,分别写有“幸”“福”“快”“乐”四个字,有放回地从中任取一个小球,取到“快”就停止,用随机模拟的方法估计直到第二次停止的概率:先由计算器产生1到4之间取整数值的随机数,且用1,2,3,4表示取出小球上分别写有“幸”“福”“快”“乐”四个字,以每两个随机数为一组,代表两次的结果,经随机模拟产生了20组随机数:
13 24 12 32 43 14 24 32 31 21
23 13 32 21 24 42 13 32 21 34
据此估计,直到第二次就停止的概率为( )
A.
B. ![]()
C.
D. ![]()
科目:高中数学 来源: 题型:
【题目】如图,在几何体
中,平面
平面
,四边形
为菱形,且
,
,
∥
,
为
中点.
(Ⅰ)求证:
∥平面
;
(Ⅱ)求直线
与平面
所成角的正弦值;
(Ⅲ)在棱
上是否存在点
,使
? 若存在,求
的值;若不存在,说明理由.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某造船公司年造船量是20艘,已知造船x艘的产值函数为R(x)=3 700x+45x2-10x3(单位:万元),成本函数为C(x)=460x-5 000(单位:万元).
(1)求利润函数P(x);(提示:利润=产值-成本)
(2)问年造船量安排多少艘时,可使公司造船的年利润最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某景区修建一栋复古建筑,其窗户设计如图所示.圆
的圆心与矩形
对角线的交点重合,且圆与矩形上下两边相切(
为上切点),与左右两边相交(
,
为其中两个交点),图中阴影部分为不透光区域,其余部分为透光区域.已知圆的半径为1
,且
,设
,透光区域的面积为
.
![]()
(1)求
关于
的函数关系式,并求出定义域;
(2)根据设计要求,透光区域与矩形窗面的面积比值越大越好.当该比值最大时,求边
的长度.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com