【题目】已知
为圆
上任一点,且点
.
(1)若
在圆
上,求线段
的长及直线
的斜率.
(2)求
的最大值和最小值.
(3)若
,求
的最大值和最小值.
科目:高中数学 来源: 题型:
【题目】已知非零向量
,
,
,
满足
=2
﹣
,
=k
+
,给出以下结论:
①若
与
不共线,
与
共线,则k=﹣2;
②若
与
不共线,
与
共线,则k=2;
③存在实数k,使得
与
不共线,
与
共线;
④不存在实数k,使得
与
不共线,
与
共线.
其中正确结论的个数是( )
A.1个
B.2个
C.3个
D.4个
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
:
的短轴长为
,右焦点为
,点
是椭圆
上异于左、右顶点
的一点.
(1)求椭圆
的方程;
(2)若直线
与直线
交于点
,线段
的中点为
,证明:点
关于直线
的对称点在直线
上.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】袋子中有四个小球,分别写有“幸”“福”“快”“乐”四个字,有放回地从中任取一个小球,取到“快”就停止,用随机模拟的方法估计直到第二次停止的概率:先由计算器产生1到4之间取整数值的随机数,且用1,2,3,4表示取出小球上分别写有“幸”“福”“快”“乐”四个字,以每两个随机数为一组,代表两次的结果,经随机模拟产生了20组随机数:
13 24 12 32 43 14 24 32 31 21
23 13 32 21 24 42 13 32 21 34
据此估计,直到第二次就停止的概率为( )
A.
B. ![]()
C.
D. ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】滨湖区拟建一主题游戏园,该游戏园为四边形区域ABCD,其中三角形区城ABC为主题活动区,其中∠ACB=60°,∠ABC=45°,AB=12
m;AD、CD为游客通道(不考虑宽度),且∠ADC=120°,通道AD、CD围成三角形区域ADC为游客休闲中心,供游客休憩. ![]()
(1)求AC的长度;
(2)记游客通道AD与CD的长度和为L,求L的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知双曲线
(a>0,b>0)的右准线l2与一条渐近线l交于点P,F是双曲线的右焦点.
(1)求证:PF⊥l;
(2)若PF=3,且双曲线的离心率e=
,求该双曲线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设锐角△ABC的三内角A、B、C所对边的边长分别为a、b、c,且 a=1,B=2A,则b的取值范围为( )
A.(
,
)
B.(1,
)
C.(
,2)
D.(0,2)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某中学高三年级从甲、乙两个班级各选出7名学生参加数学竞赛,他们取得的成绩(满分100分)的茎叶图如图,其中甲班学生的平均分是85,乙班学生成绩的中位数是83,则x+y的值为 . ![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com