【题目】某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间
,需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:
![]()
以最高气温位于各区间的频率代替最高气温位于该区间的概率.
(1)求六月份这种酸奶一天的需求量不超过300瓶的概率,;
(2)设六月份一天销售这种酸奶的利润为
(单位:元),当六月份这种酸奶一天的进货量为450瓶时,写出
的所有可能值,并估计
大于零的概率.
【答案】(1)0.6; (2)0.8.
【解析】
(1)由前三年六月份各天的最高气温数据,求出最高气温位于区间
和最高气温低于
的天数,由此能求出六月份这种酸奶一天的需求量不超过300瓶的概率;(2)当湿度大于等于
时,需求量为500 ,求出
元;当温度在
时,需求量为300,求出
元;当温度低于
时,需求量为200,求出
元,从而当温度大于等于20时,
,由此能估计估计
大于零的概率.
(1)这种酸奶一天的需求量不超过300瓶,当且仅当最高气温低于25,由表格数据知,最高气温低于25的频率为
, 所以这种酸奶一天的需求量不超过300瓶的概率的估计值为0.6.
(2)当这种酸奶一天的进货量为450瓶时,
若最高气温不低于25,则Y=6
450-4
450=900;
若最高气温位于区间 [20,25),则Y=6
300+2(450-300)-4
450=300;
若最高气温低于20,则Y=6
200+2(450-200)-4
450= -100.
所以,Y的所有可能值为900,300,-100.
Y大于零当且仅当最高气温不低于20,由表格数据知,最高气温不低于20的频率为
,因此Y大于零的概率的估计值为0.8.
科目:高中数学 来源: 题型:
【题目】“大众创业,万众创新”是李克强总理在本届政府工作报告中向全国人民发出的口号,某生产企业积极响应号召,大力研发新产品,为了对新研发的一批产品进行合理定价,将该产品按事先拟定的价格进行试销,得到一组销售数据
,如表所示:
试销单价x(元) | 4 | 5 | 6 | 7 | 8 | 9 |
产品销量y(件) | 90 | 84 | 83 | 80 | 75 | 68 |
(1)已知变量x,y具有线性相关关系,求产品销量y(件)关于试销单价x(元)的线性回归方程
;
(2)用
表示用(1)中所求的线性回归方程得到的与
对应的产品销量的估计值.当销售数据
对应的残差的绝对值
时,则将销售数据
称为一个“好数据”.现从6个销售数据中任取3个,求“好数据”个数
的分布列和数学期望
.
(参考公式:
;参考数据:
)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙两人进行围棋比赛,约定先连胜两局者直接赢得比赛.若赛完5局仍未出现连胜,则判定获胜局数多者赢得比赛.假设每局甲获胜的概率为
,乙获胜的概率为
各局比赛结果相互独立.则甲在4局以内(含4局)赢得比赛的概率为( )
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设
是圆
上的任意一点,
是过点
且与
轴垂直的直线,
是直线
与
轴的交点,点
在直线
上,且满足
.当点
在圆
上运动时,记点
的轨迹为曲线
.
(1)求曲线
的方程;
(2)已知直线
与曲线
交于
,
两点,点
关于
轴的对称点为
,证明:直线
过定点
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在矩形ABCD中,AB=2,AD=1,M为AB的中点,将△ADM沿DM翻折.在翻折过程中,当二面角A—BC—D的平面角最大时,其正切值为( )
![]()
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】水果的价格会受到需求量和天气的影响.某采购员定期向某批发商购进某种水果,每箱水果的价格会在当日市场价的基础上进行优惠,购买量越大优惠幅度越大,采购员通过对以往的10组数据进行研究,发现可采用
来作为价格的优惠部分
(单位:元/箱)与购买量
(单位:箱)之间的回归方程,整理相关数据得到下表(表中
):
![]()
(1)根据参考数据,
①建立
关于
的回归方程;
②若当日该种水果的市场价为200元/箱,估算购买100箱该种水果所需的金额(精确到0.1元).
(2)在样本中任取一点,若它在回归曲线上或上方,则称该点为高效点.已知这10个样本点中,高效点有4个,现从这10个点中任取3个点,设取到高效点的个数为
,求
的数学期望.
附:对于一组数据
,
,…,
,其回归直线
的斜率和截距的最小二乘估计分别为
,
,参考数据:![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲乙两人进行某种游戏比赛,规定:每一次胜者得1分,负者得0分;当其中一人的得分比另一人的得分多2分时即赢得这场游戏,比赛随之结束.同时规定:比赛次数最多不超过20次,即经20次比赛,得分多者赢得这场游戏,得分相等为和局.已知每次比赛甲获胜的概率为可
,乙获胜的概率为
.假定各次比赛的结果是相互独立的,比赛经
次结束.求
的期望
的变化范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com