【题目】已知θ为向量
与
的夹角,|
|=2,|
|=1,关于x的一元二次方程x2﹣|
|x+
=0有实根.
(Ⅰ)求θ的取值范围;
(Ⅱ)在(Ⅰ)的条件下,求函数f(θ)=sin(2θ+
)的最值及对应的θ的值.
【答案】解:(Ⅰ)∵θ为向量
与
的夹角,|
|=2,|
|=1,关于x的一元二次方程x2﹣|
|x+
=0有实根.
∴△=
﹣4
=4﹣421cosθ≥0,∴cosθ≤
,∴θ∈[
,π].
(Ⅱ)在(Ⅰ)的条件下,函数f(θ)=sin(2θ+
),
∵θ∈[
,π],∴2θ+
∈[π,
],故当2θ+
=
时,即θ=
时,函数f(θ)取得最小值为﹣1;
当2θ+
=
时,即θ=π时,函数f(θ)取得最大值为 ![]()
【解析】(Ⅰ)由题意根据△=4﹣421cosθ≥0,求得cosθ的范围,可得θ的范围.(Ⅱ)在(Ⅰ)的条件下,函数f(θ)=sin(2θ+
),再利用正弦函数的定义域和值域,求得函数f(θ)=sin(2θ+
)的最值及对应的θ的值.
科目:高中数学 来源: 题型:
【题目】某公司为了准确地把握市场,做好产品生产计划,对过去四年的数据进行整理得到了第
年与年销量
(单位:万件)之间的关系如表:
| 1 | 2 | 3 | 4 |
| 12 | 28 | 42 | 56 |
![]()
(Ⅰ)在图中画出表中数据的散点图;
(Ⅱ)根据(Ⅰ)中的散点图拟合
与
的回归模型,并用相关系数甲乙说明;
(Ⅲ)建立
关于
的回归方程,预测第5年的销售量约为多少?.
附注:参考数据:
,
,
.
参考公式:相关系数
,
回归方程
中斜率和截距的最小二乘法估计公式分别为:
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,OAB是一块半径为1,圆心角为
的扇形空地.现决定在此空地上修建一个矩形的花坛CDEF,其中动点C在扇形的弧
上,记∠COA=θ.
(Ⅰ)写出矩形CDEF的面积S与角θ之间的函数关系式;
(Ⅱ)当角θ取何值时,矩形CDEF的面积最大?并求出这个最大面积.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设
是正项数列
的前
项和,且
.
(Ⅰ)求数列
通项公式;
(Ⅱ)是否存在等比数列
,使
对一切正整数
都成立?并证明你的结论.
(Ⅲ)设
(
),且数列
的前
项和为
,试比较
与
的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】园林管理处拟在公园某区域规划建设一半径为
米圆心角为
(弧度)的扇形景观水池,其中
为扇形
的圆心,同时紧贴水池周边建一圈理想的无宽度步道,要求总预算费用不超过
万元,水池造价为每平方米
元,步道造价为每米
元.
(1)当
和
分别为多少时,可使广场面积最大,并求出最大值;
(2)若要求步道长为
米,则可设计出水池最大面积是多少.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(12分)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布N(μ,σ2).
(1)假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在(μ–3σ,μ+3σ)之外的零件数,求P(X≥1)及X的数学期望;
(2)一天内抽检零件中,如果出现了尺寸在(μ–3σ,μ+3σ)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.
(ⅰ)试说明上述监控生产过程方法的合理性;
(ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:
9.95 | 10.12 | 9.96 | 9.96 | 10.01 | 9.92 | 9.98 | 10.04 |
10.26 | 9.91 | 10.13 | 10.02 | 9.22 | 10.04 | 10.05 | 9.95 |
经计算得
,
,其中xi为抽取的第i个零件的尺寸,i=1,2,…,16.
用样本平均数
作为μ的估计值
,用样本标准差s作为σ的估计值
,利用估计值判断是否需对当天的生产过程进行检查?剔除
之外的数据,用剩下的数据估计μ和σ(精确到0.01).
附:若随机变量Z服从正态分布N(μ,σ2),则P(μ–3σ<Z<μ+3σ)=0.997 4,0.997 416≈0.959 2,
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com