【题目】如图,OAB是一块半径为1,圆心角为
的扇形空地.现决定在此空地上修建一个矩形的花坛CDEF,其中动点C在扇形的弧
上,记∠COA=θ.
(Ⅰ)写出矩形CDEF的面积S与角θ之间的函数关系式;
(Ⅱ)当角θ取何值时,矩形CDEF的面积最大?并求出这个最大面积.![]()
科目:高中数学 来源: 题型:
【题目】下列说法正确的是( )
A.有两个面平行,其余各面都是四边形的几何体叫棱柱.
B.有两个面平行,其余各面都是平行四边形的几何体叫棱柱.
C.有一个面是多边形,其余各面都是三角形的几何体叫棱锥.
D.棱台各侧棱的延长线交于一点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图是为求S=1+
+
+…
的和而设计的程序框图,将空白处补上,指明它是循环结构中的哪一种类型,并画出它的另一种循环结构框图.如图是当型循环结构.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知θ为向量
与
的夹角,|
|=2,|
|=1,关于x的一元二次方程x2﹣|
|x+
=0有实根.
(Ⅰ)求θ的取值范围;
(Ⅱ)在(Ⅰ)的条件下,求函数f(θ)=sin(2θ+
)的最值及对应的θ的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥
中,底面
是边长为
的正方形,侧面![]()
底面
,且
,
、
分别为
、
的中点.
![]()
(1)求证:
平面
;
(2)求证:面
平面
;
(3)在线段
上是否存在点
,使得二面角
的余弦值为
?说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】先将函数y=f(x)的图象向左平移
个单位,然后再将所得图象上所有点的纵坐标不变,横坐标伸长到原来的2倍,最后再将所得图象向上平移1个单位,得到函数y=sinx的图象.
(Ⅰ)求函数y=f(x)的解析式;
(Ⅱ)若函数y=g(x)与y=f(x)的图象关于点M(
,2)对称,求函数y=g(x)在[0,
]上的最小值和最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆
:
和抛物线
:
,
为坐标原点.
(1)已知直线
和圆
相切,与抛物线
交于
两点,且满足
,求直线
的方程;
(2)过抛物线
上一点
作两直线
和圆
相切,且分别交抛物线
于
两点,若直线
的斜率为
,求点
的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com