【题目】已知函数
的部分图象如图所示,且相邻的两个最值点的距离为
.
![]()
(1)求函数
的解析式;
(2)若将函数
的图象向左平移1个单位长度后得到函数
的图象,关于
的不等式
在
上有解,求
的取值范围.
科目:高中数学 来源: 题型:
【题目】已知椭圆
的长轴长为
,离心率为
.
![]()
(1)求椭圆
的方程;
(2)过动点
的直线交
轴于点
,交椭圆
于点
,
(
在第一象限),且
是线段
的中点.过点
作
轴的垂线交椭圆
于另一点
,延长
交椭圆
于点
.
①设直线
、
的斜率分别为
,证明
为定值;
②求直线
斜率取最小值时,直线
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于项数为
(
)的有穷正整数数列
,记
(
),即
为
中的最大值,称数列
为数列
的“创新数列”.比如
的“创新数列”为
.
(1)若数列
的“创新数列”
为1,2,3,4,4,写出所有可能的数列
;
(2)设数列
为数列
的“创新数列”,满足
(
),求证:
(
);
(3)设数列
为数列
的“创新数列”,数列
中的项互不相等且所有项的和等于所有项的积,求出所有的数列
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校有
、
、
、
四件作品参加航模类作品比赛.已知这四件作品中恰有两件获奖,在结果揭晓前,甲、乙、丙、丁四位同学对这四件参赛作品的获奖情况预测如下.
甲说:“
、
同时获奖.”
乙说:“
、
不可能同时获奖.”
丙说:“
获奖.”
丁说:“
、
至少一件获奖”
如果以上四位同学中有且只有两位同学的预测是正确的,则获奖的作品是( )
A. 作品
与作品
B. 作品
与作品
C. 作品
与作品
D. 作品
与作品![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】每年的金秋十月,越野e族阿拉善英雄会在内蒙古自治区阿拉善盟阿左旗腾格里沙漠举行,该项目已打造成集沙漠竞技运动、汽车文化极致体验、主题休闲度假为一体的超级汽车文化赛事娱乐综合体.为了减少对环境的污染,某环保部门租用了特制环保车清洁现场垃圾.通过查阅近5年英雄会参会人数
(万人)与沙漠中所需环保车辆数量
(辆),得到如下统计表:
参会人数 | 11 | 9 | 8 | 10 | 12 |
所需环保车辆 | 28 | 23 | 20 | 25 | 29 |
(1)根据统计表所给5组数据,求出
关于
的线性回归方程
.
(2)已知租用的环保车平均每辆的费用
(元)与数量
(辆)的关系为
.主办方根据实际参会人数为所需要投入使用的环保车,
每辆支付费用6000元,超出实际需要的车辆,主办方不支付任何费用.预计本次英雄会大约有14万人参加,根据(Ⅰ)中求出的线性回归方程,预测环保部门在确保清洁任务完成的前提下,应租用多少辆环保车?获得的利润
是多少?(注:利润
主办方支付费用
租用车辆的费用).
参考公式:![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】交通拥堵指数是综合反映道路网畅通或拥堵的概念,记交通拥堵指数为 ,其范围为
,分别有五个级别: 畅通; 基本畅通; 轻度拥堵; 中度拥堵;
严重拥堵.晚高峰时段
,从某市交通指挥中心选取了市区
个交通路段,依据其交通拥堵指数数据绘制的直方图如图所示.
![]()
(Ⅰ)求出轻度拥堵,中度拥堵,严重拥堵路段各有多少个;
(Ⅱ)用分层抽样的方法从交通指数在
,
,
的路段中共抽取
个路段,求依次抽取的三个级别路段的个数;
(Ⅲ)从(Ⅱ)中抽取的
个路段中任取
个,求至少
个路段为轻度拥堵的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com