精英家教网 > 高中数学 > 题目详情

【题目】定义在上的函数,给出下列四个命题:

①若是偶函数,则的图像关于直线对称;

②若,则的图像关于点对称;

③若,且,则的一个周期为2;

的图像关于直线对称;

其中正确命题的序号为________

【答案】②③

【解析】

①若fx)是偶函数,则fx)的图象关于y轴对称,fx+1)的图象可由fx)图象向左平移1个单位得到,即可判断;

②由fx+a+fax)=2b,则fx)的图象关于点(ab)对称,即可判断;

③由函数的对称性得fx+6)=f(﹣x),且fx+8)=f(﹣x),即有fx+2)=fx),即可判断;

④令x+3t,则xt3,则yft)和yf6t)的图象关于t3对称,即可判断.

①若fx)是偶函数,则fx)的图象关于y轴对称,

fx+1)的图象可由fx)图象向左平移1个单位得到,

故图象关于直线x=﹣1对称,故①错;

②若fx+3)=﹣f3x),即f3+x+f3x)=0

fx)的图象关于点(30)对称,故②对;

③若fx+3)=f3x),且fx+4)=f4x),

fx+6)=f(﹣x),且fx+8)=f(﹣x),即有fx+6)=fx+8)即有fx+2)=fx),

fx)的一个周期为2,故③对;

④令x+3t,则xt3,则yft)和yf6t)的图象关于t3对称,

yfx+3)与yf3x)的图象关于直线x0对称,故④错.

故答案为:②③.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】(本题满分12分) 如图,的外接圆的半径为所在的平面,,且

1)求证:平面ADC平面BCDE

2)试问线段DE上是否存在点M,使得直线AM与平面ACD所成角的正弦值为?若存在,

确定点M的位置,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题错误的是( )

A. 命题“若,则”的逆否命题为“若 ,则

B. 为假命题,则均为假命题

C. 对于命题,使得,则,均有

D. ”是“”的充分不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数是定义在上的奇函数,且为偶函数,当时,,若有三个零点,则实数的取值集合是________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年来,某市为促进生活垃圾的分类处理,将生活垃圾分为厨余垃圾、可回收物和其他垃圾三类,并分别设置了相应的垃圾箱.为调查居民生活垃圾分类投放情况,现随机抽取了该市三类垃圾箱中总计1000t生活垃圾.经分拣以后数据统计如下表(单位:):根据样本估计本市生活垃圾投放情况,下列说法错误的是(

厨余垃圾

可回收物

其他垃圾

厨余垃圾

400

100

100

可回收物

30

240

30

其他垃圾

20

20

60

A.厨余垃圾投放正确的概率为

B.居民生活垃圾投放错误的概率为

C.该市三类垃圾箱中投放正确的概率最高的是可回收物

D.厨余垃圾在厨余垃圾箱、可回收物箱、其他垃圾箱的投放量的方差为20000

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知曲线上的动点到点的距离与到直线的距离相等.

1)求曲线的轨迹方程;

2)过点分别作射线交曲线于不同的两点,且.试探究直线是否过定点?如果是,请求出该定点;如果不是,请说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)求实数的值;

2)判断函数在区间上的单调性,并用函数单调性的定义证明;

3)求实数的取值范围,使得关于的方程分别为:

①有且仅有一个实数解;②有两个不同的实数解;③有三个不同的实数解.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】临近2020年春节,西宁市各卖场挖空心思寻找促销策略.商人张三丰善于运用数学思维进行销售分析,他根据以往当地的需求情况,得出如下他所经营的某种产品日需求量的频率分布直方图.

1)求图中的值,并估计日需求量的众数:

2)某日,张三丰购进130件该种产品,根据近期市场行情,当天每售出1件能获利30元,未售出的部分,每件亏损20元设当天的需求量为,纯利润为

i)将表示为的函数;(ii)根据直方图估计当天纯利润不少于3400元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)证明:当时,

(2)若有极大值,求的取值范围;

(3)若处取极大值,证明:.

查看答案和解析>>

同步练习册答案