【题目】【广东省惠州市2017届高三上学期第二次调研】已知点
,点
是圆![]()
上的任意一点,线段
的垂直平分线与直线
交于点
.
(Ⅰ)求点
的轨迹方程;
(Ⅱ)若直线
与点
的轨迹有两个不同的交点
和
,且原点
总在以
为直径的圆的内部,求实数
的取值范围.
科目:高中数学 来源: 题型:
【题目】学校艺术节对同一类的
,
,
,
四项参赛作品,只评一项一等奖,在评奖揭晓前,甲、乙、丙、丁四位同学对这四项参赛作品获奖情况预测如下:
甲说:“
或
作品获得一等奖”
乙说:“
作品获得一等奖”
丙说:“
,
两项作品未获得一等奖”
丁说:“
作品获得一等奖”.
若这四位同学中只有两位说的话是对的,则获得一等奖的作品是__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的左、右焦点分别为
,点
是椭圆
上的点,离心率
.
(1)求椭圆
的方程;
(2)点
在椭圆
上,若点
与点
关于原点对称,连接
并延长与椭圆
的另一个交点为
,连接
,求
面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】将函数y=2sin(﹣2x+
)的图象向左平移
个单位后,得到的图象对应的解析式应该是( )
A.y=﹣2sin(2x)
B.y=﹣2sin(2x+
)
C.y=﹣2sin(2x﹣
)
D.y=﹣2sin(2x+
)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某地区拟建立一个艺术博物馆,采取竞标的方式从多家建筑公司选取一家建筑公司,经过层层筛选,甲、乙两家建筑公司进入最后的招标.现从建筑设计院聘请专家设计了一个招标方案:两家公司从
个招标问题中随机抽取
个问题,已知这
个招标问题中,甲公司可正确回答其中的
道題目,而乙公司能正确回答毎道题目的概率均为
,甲、乙两家公司对每题的回答都是相互独立,互不影响的.
(1)求甲、乙两家公司共答对
道题目的概率;
(2)请从期望和方差的角度分析,甲、乙两家哪家公司竞标成功的可能性更大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】正四棱锥P﹣ABCD,B1为PB的中点,D1为PD的中点,则两个棱锥A﹣B1CD1 , P﹣ABCD的体积之比是( ) ![]()
A.1:4
B.3:8
C.1:2
D.2:3
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P-ABCD中,O为AC与BD的交点,AB平面PAD,△PAD是正三角形,DC//AB,DA=DC=2AB.
![]()
(1)若点E为棱PA上一点,且OE∥平面PBC,求
的值;
(2)求证:平面PBC平面PDC.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com