【题目】已知A、B分别为椭圆E:
(a>1)的左、右顶点,G为E的上顶点,
,P为直线x=6上的动点,PA与E的另一交点为C,PB与E的另一交点为D.
(1)求E的方程;
(2)证明:直线CD过定点.
【答案】(1)
;(2)证明详见解析.
【解析】
(1)由已知可得:
,
,
,即可求得
,结合已知即可求得:
,问题得解.
(2)设
,可得直线
的方程为:
,联立直线
的方程与椭圆方程即可求得点
的坐标为
,同理可得点
的坐标为
,当
时,可表示出直线
的方程,整理直线
的方程可得:
即可知直线过定点
,当
时,直线
:
,直线过点
,命题得证.
(1)依据题意作出如下图象:
![]()
由椭圆方程
可得:
,
,![]()
![]()
,![]()
![]()
,![]()
![]()
椭圆方程为:![]()
(2)证明:设
,
则直线
的方程为:
,即:![]()
联立直线
的方程与椭圆方程可得:
,整理得:
,解得:
或![]()
将
代入直线
可得:![]()
所以点
的坐标为
.
同理可得:点
的坐标为![]()
当
时,
直线
的方程为:
,
整理可得:![]()
整理得:![]()
所以直线
过定点
.
当
时,直线
:
,直线过点
.
故直线CD过定点
.
科目:高中数学 来源: 题型:
【题目】新冠肺炎期间某商场开通三种平台销售商品,收集一月内的数据如图1;为了解消费者对各平台销售方式的满意程度,该商场用分层抽样的方法抽取4%的顾客进行满意度调查,得到的数据如图2.下列说法错误的是( )
![]()
![]()
A.样本容量为240
B.若样本中对平台三满意的人数为40,则![]()
C.总体中对平台二满意的消费者人数约为300
D.样本中对平台一满意的人数为24人
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(选修4-4:坐标系与参数方程)
已知曲线C的极坐标方程是ρ=2cosθ,以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直线L的参数方程是
(t为参数).
(1)求曲线C的直角坐标方程和直线L的普通方程;
(2)设点P(m,0),若直线L与曲线C交于A,B两点,且|PA||PB|=1,求实数m的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我国南宋数学家杨辉在所著的《详解九章算法》一书中用如图所示的三角形解释二项展开式的系数规律,去掉所有为1的项,依次构成2,3,3,4,6,4,5,10,10,5,6…,则此数列的前50项和为( )
![]()
A.2025B.3052C.3053D.3049
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,
为圆锥的顶点,
是圆锥底面的圆心,
是底面的内接正三角形,
为
上一点,∠APC=90°.
![]()
(1)证明:平面PAB⊥平面PAC;
(2)设DO=
,圆锥的侧面积为
,求三棱锥PABC的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C1:
(a>b>0)的右焦点F与抛物线C2的焦点重合,C1的中心与C2的顶点重合.过F且与x轴重直的直线交C1于A,B两点,交C2于C,D两点,且|CD|=
|AB|.
(1)求C1的离心率;
(2)若C1的四个顶点到C2的准线距离之和为12,求C1与C2的标准方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知三棱柱ABC-A1B1C1的底面是正三角形,侧面BB1C1C是矩形,M,N分别为BC,B1C1的中点,P为AM上一点,过B1C1和P的平面交AB于E,交AC于F.
![]()
(1)证明:AA1∥MN,且平面A1AMN⊥EB1C1F;
(2)设O为△A1B1C1的中心,若AO∥平面EB1C1F,且AO=AB,求直线B1E与平面A1AMN所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
为抛物线
的焦点,过
的动直线交抛物线
于
,
两点.当直线与
轴垂直时,
.
(1)求抛物线
的方程;
(2)设直线
的斜率为1且与抛物线的准线
相交于点
,抛物线
上存在点
使得直线
,
,
的斜率成等差数列,求点
的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】十五巧板、又称益智图,为清朝浙江省德清知县童叶庚在同治年间所发明,它能拼出草木、花果、鸟兽、鱼虫、文字等图案.十五巧板由十五块板组成一个大正方形(如图1),其中标号为2,3,4,5的小板均为等腰直角三角形,图2是用十五巧板拼出的2019年生肖猪的图案,则从生肖猪图案中任取一点,该点恰好取自阴影部分中的概率为______.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com