精英家教网 > 高中数学 > 题目详情

【题目】某地的中小学办学条件在政府的教育督导下,迅速得到改变.教育督导一年后.分别随机抽查了初中(用表示)与小学(用表示)各10所学校.得到相关指标的综合评价得分(百分制)的茎叶图如图所示.则从茎叶图可得出正确的信息为( )(80分及以上为优秀). ①初中得分与小学得分的优秀率相同;②初中得分与小学得分的中位数相同③初中得分的方差比小学得分的方差大④初中得分与小学得分的平均分相同.

A.①②B.①③C.②④D.③④

【答案】B

【解析】

根据茎叶图可计算优秀率、中位数、平均数;根据得分的分散程度可判断方差大小关系,从而可得各个选项的正误.

从茎叶图可知

抽查的初中优秀率为:;小学的优秀率为:

可知①正确;

初中的中位数为,小学的中位数为,可知②错误;

初中得分比较分散,所以初中的方差大,可知③正确;

初中的平均分为,小学的平均分为,可知④错误.

本题正确选项:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为为参数),以坐标原点为极点,轴的正半轴为极轴,取相同长度单位建立极坐标系,直线的极坐标方程为.

(Ⅰ)求曲线和直线的直角坐标方程;

(Ⅱ)直线轴交点为,经过点的直线与曲线交于两点,证明:为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给定椭圆,称圆心在原点,半径为的圆是椭圆的“伴椭圆”,若椭圆的一个焦点为,其短轴上一个端点到的距离为.

(1)求椭圆的方程;

(2)过点作椭圆的“伴随圆”的动弦,过点分别作“伴随圆”的切线,设两切线交于点,证明:点的轨迹是直线,并写出该直线的方程;

(3)设点是椭圆的“伴随圆”上的一个动点,过点作椭圆的切线,试判断直线是否垂直?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校共有学生2000人,其中男生1100人,女生900人为了调查该校学生每周平均课外阅读时间,采用分层抽样的方法收集该校100名学生每周平均课外阅读时间(单位:小时)

1)应抽查男生与女生各多少人?

2)如图,根据收集100人的样本数据,得到学生每周平均课外阅读时间的频率分布直方图,其中样本数据分组区间为.若在样本数据中有38名女学生平均每周课外阅读时间超过2小时,请完成每周平均课外阅读时间与性别的列联表,并判断是否有95%的把握认为“该校学生的每周平均课外阅读时间与性别有关”.

男生

女生

总计

每周平均课外阅读时间不超过2小时

每周平均课外阅读时间超过2小时

总计

附:

0.100

0.050

0.010

0.005

2.706

3.841

6.635

7.879

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论函数的单调性;

2)对任意的,恒有,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求函数的单调区间;

(2)当时,若函数的两个极值点分别为,证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三棱柱中,,侧面底面的中点,.

(Ⅰ)求证:为直角三角形;

(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)当时,求函数的单调区间;

(2)若函数的值域为,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列的前137)组成集合,从集合中任取)个数,其所有可能的个数的乘积的和为(若只取一个数,规定乘积为此数本身),记.例如:当时,时,.

1)当时,求的值;

2)证明:时集合时集合(为以示区别,用表示)有关系式);

3)试求(用表示).

查看答案和解析>>

同步练习册答案