精英家教网 > 高中数学 > 题目详情

【题目】数列的前137)组成集合,从集合中任取)个数,其所有可能的个数的乘积的和为(若只取一个数,规定乘积为此数本身),记.例如:当时,时,.

1)当时,求的值;

2)证明:时集合时集合(为以示区别,用表示)有关系式);

3)试求(用表示).

【答案】(1)(2)见解析(3)

【解析】

1)当时,得出,根据定义得出的值,可计算出的值;

2)当时,集合个元素,比时的集合多了一个元素;

,对应的包含两个部分:(i)若不含,则中的任何一项恰好为时集合的对应的中的一项;(ii)若中含的任何一项,除了,其余的个数均来自集合,这个数的乘积恰好为集合所对应的中的一项,即可证明;

3)由,猜想,下面利用数学归纳法进行即可.

1)当时,

2)证明:当时,集合个元素,比时的集合多了一个元素:.∴对应的包含两个部分:

中不含,则中的任何一项恰好为时集合的对应的中的一项.

中含的任何一项,除了,其余的个数均来自集合,这个数的乘积恰好为集合所对应的中的一项.

∴有关系式

3)解:由

猜想.下面证明:(i)易知时成立.

ii)假设时,

时,

(其中2,…,k,为时可能的k个数的乘积的和为

,即时,也成立,

综合(i)(ii)知对成立.

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某地的中小学办学条件在政府的教育督导下,迅速得到改变.教育督导一年后.分别随机抽查了初中(用表示)与小学(用表示)各10所学校.得到相关指标的综合评价得分(百分制)的茎叶图如图所示.则从茎叶图可得出正确的信息为( )(80分及以上为优秀). ①初中得分与小学得分的优秀率相同;②初中得分与小学得分的中位数相同③初中得分的方差比小学得分的方差大④初中得分与小学得分的平均分相同.

A.①②B.①③C.②④D.③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中国铁路总公司相关负责人表示,到2018年底,全国铁路营业里程达到13.1万公里,其中高铁营业里程2.9万公里,超过世界高铁总里程的三分之二,下图是2014年到2018年铁路和高铁运营里程(单位:万公里)的折线图,以下结论不正确的是( )

A.每相邻两年相比较,2014年到2015年铁路运营里程增加最显著

B.从2014年到2018年这5年,高铁运营里程与年价正相关

C.2018年高铁运营里程比2014年高铁运营里程增长80%以上

D.从2014年到2018年这5年,高铁运营里程数依次成等差数列

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,在平面四边形中,,现将沿四边形的对角线折起,使点运动到点,如图2,这时平面平面.

(1)求直线与平面所成角的正切值;

(2)求二面角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂因排污比较严重,决定着手整治,一个月时污染度为,整治后前四个月的污染度如下表:

月数

污染度

污染度为后,该工厂即停止整治,污染度又开始上升,现用下列三个函数模拟从整治后第一个月开始工厂的污染模式:,其中表示月数,分别表示污染度.

1)问选用哪个函数模拟比较合理,并说明理由;

2)若以比较合理的模拟函数预测,整治后有多少个月的污染度不超过

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱锥中,底面为等边三角形,分别是的中点.

1)证明:平面平面

2)如何在上找一点,使平面并说明理由;

3)若,对于(2)中的点,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的右焦点为,且点在椭圆C上.

(1)求椭圆C的标准方程;

(2)过椭圆上异于其顶点的任意一点Q作圆的两条切线,切点分别为不在坐标轴上),若直线x轴,y轴上的截距分别为,证明:为定值;

(3)若是椭圆上不同两点,轴,圆E,且椭圆上任意一点都不在圆E内,则称圆E为该椭圆的一个内切圆,试问:椭圆是否存在过焦点F的内切圆?若存在,求出圆心E的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司为了应对金融危机,决定适当进行裁员,已知这家公司现有职工人(,且10的整数倍),每人每年可创利100千元,据测算,在经营条件不变的前的提下,若裁员人数不超过现有人数的30%,则每裁员1人,留岗员工每人每年就能多创利1千元(即若裁员人,留岗员工可多创利润千元);若裁员人数超过现有人数的30%,则每裁员1人,留岗员工每人每年就能多创利2千元(即若裁员人,留岗员工可多创利润千元),为保证公司的正常运转,留岗的员工数不得少于现有员工人数的50%,为了保障被裁员工的生活,公司要付给被裁员工每人每年20千元的生活费.

1)设公司裁员人数为,写出公司获得的经济效益(千元)关于的函数(经济效益=在职人员创利总额被裁员工生活费);

2)为了获得最大的经济效益,该公司应裁员多少人?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为两非零有理数列(即对任意的均为有理数),为一无理数列(即对任意的为无理数).

1)已知,并且对任意的恒成立,试求的通项公式.

2)若为有理数列,试证明:对任意的恒成立的充要条件为

3)已知,对任意的恒成立,试计算

查看答案和解析>>

同步练习册答案