【题目】设
,函数
.
(1)当
时,求曲线
在点
处的切线方程;
(2)若
对
恒成立,求实数
的取值范围.
【答案】(1)
;(2)
.
【解析】
试题(1)当
时,根据函数
的解析式求得切点坐标,由导数的几何意义求出切线的斜率,根据直线的点斜式方程即可得到切线方程;(2)先讨论函数
的符号,由于
,所以可分离参数得到
,构造函数
,利用导数研究
的单调性求出其最大值,求得实数
的取值范围,再确定函数
的符号,再分离参数
,构造新函数
,求得函数
的最小值,综合以上过程即得实数
的取值范围.
试题解析:(1)当
时,
,∴
,∵
,
∴曲线
在点
处的切线方程为
即
.
(2)若
对
恒成立,即
对
恒成立,则
,
设
,则
,
当
时,
,函数
递增;当
时,
,函数
递减,所以当
时,
,∴
.
∵
无最小值,∴
对
恒成立不可能.
∵
对
恒成立,∴
,即
对
恒成立.
设
,∴
,当
时,
,函数
递减;
当
时,
,函数
递增,所以当
时,
,∴
.
综上可得,
.
科目:高中数学 来源: 题型:
【题目】已知过点
作动直线
与抛物线
相交于
,
两点.
(1)当直线的斜率是
时,
,求抛物线
的方程;
(2)设
,
的中点是
,利用(1)中所求抛物线,试求点
的轨迹方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,已知曲线
的参数方程为
(
为参数),以原点为极点,
轴正半轴为极轴建立极坐标系,直线
的极坐标方程为:
,直线
的极坐标方程为
.
(Ⅰ)写出曲线
的极坐标方程,并指出它是何种曲线;
(Ⅱ)设
与曲线
交于
,
两点,
与曲线
交于
,
两点,求四边形
面积的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知四边形
为矩形,
,
为
的中点,将
沿
折起,得到四棱锥
,设
的中点为
,在翻折过程中,得到如下有三个命题:
①
平面
,且
的长度为定值
;
②三棱锥
的最大体积为
;
③在翻折过程中,存在某个位置,使得
.
其中正确命题的序号为__________.(写出所有正确结论的序号)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】十二生肖,又称十二属相,中国古人拿十二种动物来配十二地支,组成子鼠、丑牛、寅虎、卯兔、辰龙、巳蛇、午马、未羊、申猴、酉鸡、戌狗、亥猪十二属相。现有十二生肖吉祥物各一件,甲、乙、丙三位同学一次随机抽取一件作为礼物,甲同学喜欢马、牛,乙同学喜欢马、龙、狗,丙同学除了鼠不喜欢外其他的都喜欢,则这三位同学抽取的礼物都喜欢的概率是( )
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某创业者计划在某旅游景区附近租赁一套农房发展成特色“农家乐”,为了确定未来发展方向此创业者对该景区附近五家“农家乐”跟踪调查了100天,这五家“农家乐的收费标准互不相同得到的统计数据如下表,x为收费标准(单位:元/日),t为入住天数(单位:天),以频率作为各自的“入住率”,收费标准x与“入住率”y的散点图如图
x | 100 | 150 | 200 | 300 | 450 |
t | 90 | 65 | 45 | 30 | 20 |
![]()
(1)若从以上五家“农家乐”中随机抽取两家深人调查,记
为“入住率超过0.6的农家乐的个数,求
的概率分布列
(2)z=lnx,由散点图判断
与
哪个更合适于此模型(给出判断即可不必说明理由)?并根据你的判断结果求回归方程(a,
的结果精确到0.1)
(3)根据第(2)问所求的回归方程,试估计收费标准为多少时,100天销售额L最大?(100天销售额L=100×入住率×收费标准x)
参考数据
,
,
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com