【题目】高二年级有男生490人,女生510人,张华按男生、女生进行分层,通过分层随机抽样的方法,得到男生、女生的平均身高分别为170.2cm和160.8cm.
(1)如果张华在各层中按比例分配样本,总样本量为100,那么在男生、女生中分别抽取了多少名?在这种情况下,请估计高二年级全体学生的平均身高.
(2)如果张华从男生、女生中抽取的样本量分别为30和70,那么在这种情况下,如何估计高二年级全体学生的平均身高更合理?
科目:高中数学 来源: 题型:
【题目】设
分别是正方体
的棱
上两点,且
,给出下列四个命题:①三棱锥
的体积为定值;②异面直线
与
所成的角为
;③
平面
;④直线
与平面
所成的角为
.其中正确的命题为( )
A. ①② B. ②③ C. ①②④ D. ①④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】空中有一气球,在它的正西方A点测得它的仰角为45°,同时在它南偏东60°的B点,测得它的仰角为30°,已知A、B两点间的距离为107米,这两个观测点均离地1米,则测量时气球离地的距离是_____米.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系
中,直线
的参数方程为
(
为参数),在以坐标原点
为极点,以
轴正半轴为极轴的极坐标中,圆
的方程为
.
(1)写出直线
的普通方程和圆
的直角坐标方程;
(2)若点
的坐标为
,圆
与直线
交于
两点,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
.
(1)判断函数
的奇偶性,并说明理由;
(2)设
,问函数
的图像是否关于某直线
成轴对称图形,如果是,求出
的值,如果不是,请说明理由;(可利用真命题:“函数
的图像关于某直线
成轴对称图形”的充要条件为“函数
是偶函数”)
(3)设
,函数
,若函数
与
的图像有且只有一个公共点,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=2x-P2-x,则下列结论正确的是( )
A.
,
为奇函数且为R上的减函数
B.
,
为偶函数且为R上的减函数
C.
,
为奇函数且为R上的增函数
D.
,
为偶函数且为R上的增函数
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某中学举行一次“环保知识竞赛”,全校学生参加了这次竞赛.为了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分取正整数,满分为
分)作为样本进行统计,请根据下面尚未完成并有局部污损的样本的频率分布表和频率分布直方图(如图所示)解决下列问题:
(Ⅰ)写出
,
,
,
的值.
(Ⅱ)在选取的样本中,从竞赛成绩是
分以上(含
分)的同学中随机抽取
名同学到广场参加环保知识的志愿宣传活动,求所抽取的
名同学来自同一组的概率.
(Ⅲ)在(Ⅱ)的条件下,设
表示所抽取的
名同学中来自第
组的人数,求
的分布列及其数学期望.
组别 | 分组 | 频数 | 频率 |
第 |
|
|
|
第 |
|
|
|
第 |
|
|
|
第 |
|
|
|
第 |
|
|
|
合计 |
|
|
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
( x R ,且 e 为自然对数的底数).
⑴ 判断函数 f x 的单调性与奇偶性;
⑵是否存在实数 t ,使不等式
对一切的 x R 都成立?若存在,求出 t 的值,若 不存在说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com