【题目】某家具厂生产一种办公桌,每张办公桌的成本为100元,出厂单价为160元,该厂为鼓励销售商多订购,决定一次订购量超过100张时,每超过一张,这批订购的全部办公桌出厂单价降低1元.根据市场调查,销售商一次订购量不会超过160张.
(1)设一次订购量为
张,办公桌的实际出厂单价为
元,求
关于
的函数关系式
;
(2)当一次性订购量
为多少时,该家具厂这次销售办公桌所获得的利润
最大?其最大利润是多少元?(该家具厂出售一张办公桌的利润=实际出厂单价-成本)
科目:高中数学 来源: 题型:
【题目】已知函数
的导函数为
,且对任意的实数
都有
(
是自然对数的底数),且
,若关于
的不等式
的解集中恰有两个整数,则实数
的取值范围是
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,圆
的参数方程为
(
为参数),圆
与圆
外切于原点
,且两圆圆心的距离
,以坐标原点为极点,
轴正半轴为极轴建立极坐标系.
(1)求圆
和圆
的极坐标方程;
(2)过点
的直线
与圆
异于点
的交点分别为点
,与圆
异于点
的交点分别为点
,且
,求四边形
面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
(
)与抛物线
(
)共交点
,抛物线上的点
到
轴的距离等于
,且椭圆与抛物线的交点
满足
.
(1)求抛物线的方程和椭圆的方程;
(2)国抛物线上的点
做抛物线的切线
交椭圆于
两点,设线段
的中点为
,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为弘扬中华传统文化,学校课外阅读兴趣小组进行每日一小时的“经典名著”和“古诗词”的阅读活动. 根据调查,小明同学阅读两类读物的阅读量统计如下:
小明阅读“经典名著”的阅读量
(单位:字)与时间t(单位:分钟)满足二次函数关系,部分数据如下表所示;
t | 0 | 10 | 20 | 30 |
| 0 | 2700 | 5200 | 7500 |
阅读“古诗词”的阅读量
(单位:字)与时间t(单位:分钟)满足如图1所示的关系.
![]()
(1)请分别写出函数
和
的解析式;
(2)在每天的一小时课外阅读活动中,小明如何分配“经典名著”和“古诗词”的阅读时间,使每天的阅读量最大,最大值是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设f(x)=|lnx|,若函数g(x)=f(x)-ax在区间(0,4)上有三个零点,则实数a的取值范围是( )
A. (0,
)B. (
,e)C. (
,
)D. (0,
)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,曲边三角形中,线段
是直线
的一部分,曲线段
是抛物线
的一部分.矩形
的顶点分别在线段
,曲线段
和
轴上.设点
,记矩形
的面积为
.
![]()
(Ⅰ)求函数
的解析式并指明定义域;
(Ⅱ)求函数
的最大值.
【答案】(Ⅰ) 定义域为
;(Ⅱ) 在
时,
取得最大值
.
【解析】试题分析:( I )根据点
在直线
上,
在抛物线
上,结合图形,可得点
,从而可得函数
的解析式,联立直线与抛物线的方程,即可求得定义域;(II)对函数
求导,利用导数研究函数的单调性,从而可求得函数
的最大值.
试题解析:( I )令
,
解得
(舍)
因为点![]()
所以
,
其定义域为
(II)因为
令
,得
,
(舍)
所以
的变化情况如下表
|
|
|
|
|
| 0 |
|
|
| 极大 |
|
因为
是函数
在
上的唯一的一个极大值,
所以在
时,函数
取得最大值
.
点睛:利用导数解答函数最值的一般步骤:第一步:利用
或
求单调区间;第二步:解
得两个根
;第三步:比较两根同区间端点的大小;第四步:求极值;第五步:比较极值同端点值的大小.
【题型】解答题
【结束】
16
【题目】在各项均为正数的数列
中,
且
.
(Ⅰ)当
时,求
的值;
(Ⅱ)求证:当
时,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】从甲地到乙地要经过3个十字路口,设各路口信号灯工作相互独立,且在各路口遇到红灯的概率分别为
.
(Ⅰ)设
表示一辆车从甲地到乙地遇到红灯的个数,求随机变量
的分布列和数学期望;
(Ⅱ)若有2辆车独立地从甲地到乙地,求这2辆车共遇到1个红灯的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com