【题目】如图,在梯形
中,
,平面
平面
,四边形
是菱形,
.
![]()
(1)求证:
;
(2)求二面角
的平面角的正切值.
【答案】(1)证明见解析;(2)
.
【解析】
(1)利用勾股定理证得
,由此根据面面垂直的性质定理证得
平面
,从而证得
,根据菱形的性质证得
,由此证得
平面
,进而证得
.(2)取
的中点
,连接
,证得
两两垂直,由此建立空间直角坐标系,通过平面
和平面
的法向量,计算出二面角的余弦值,进而求得其正切值.
(1)依题意,在等腰梯形
中,
,
,
∵
,∴
即
,
∵平面
平面
,
平面
,
而
平面
,∴
.
连接
,∵四边形
是菱形,∴
,
∴
平面
,
平面
,∴
.
(2)取
的中点
,连接
,因为四边形
是菱形,且
.
所以由平面几何易知
,
∵平面
平面
,∴
平面
.
故此可以
、
、
分别为
、
、
轴建立空间直角坐标系
![]()
各点的坐标依次为:
,
,
,
,
,
.设平面
和平面
的法向量分别为
,
,
∵
,
.
∴由
,令
,则
,
同理,求得
.
∴
,故二面角
的平面角的正切值为
.
科目:高中数学 来源: 题型:
【题目】某儿童乐园在“六一”儿童节推出了一项趣味活动.参加活动的儿童需转动如图所示的转盘两次,每次转动后,待转盘停止转动时,记录指针所指区域中的数.设两次记录的数分别为x,y.奖励规则如下:
![]()
①若
,则奖励玩具一个;
②若
,则奖励水杯一个;
③其余情况奖励饮料一瓶.
假设转盘质地均匀,四个区域划分均匀.小亮准备参加此项活动.
(Ⅰ)求小亮获得玩具的概率;
(Ⅱ)请比较小亮获得水杯与获得饮料的概率的大小,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某食品集团生产的火腿按行业生产标准分成8个等级,等级系数
依次为1,2,3,…,8,其中
为标准
,
为标准
.已知甲车间执行标准
,乙车间执行标准
生产该产品,且两个车间的产品都符合相应的执行标准.
(1)已知甲车间的等级系数
的概率分布列如下表,若
的数学期望E(X1)=6.4,求
,
的值;
X1 | 5 | 6 | 7 | 8 |
P | 0.2 |
|
|
|
(2)为了分析乙车间的等级系数
,从该车间生产的火腿中随机抽取30根,相应的等级系数组成一个样本如下:3 5 3 3 8 5 5 6 3 4 6 3 4 7 5 3 4 8 5 3 8 3 4 3 4 4 7 5 6 7
用该样本的频率分布估计总体,将频率视为概率,求等级系数
的概率分布列和均值;
(3)从乙车间中随机抽取5根火腿,利用(2)的结果推断恰好有三根火腿能达到标准
的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在直角坐标系
中,圆
的参数方程为
(
为参数),圆
与圆
外切于原点
,且两圆圆心的距离
,以坐标原点为极点,
轴正半轴为极轴建立极坐标系.
(1)求圆
和圆
的极坐标方程;
(2)过点
的直线
、
与圆
异于点
的交点分别为点
和点
,与圆
异于点
的交点分别为点
和点
,且
.求四边形
面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】【2018湖南(长郡中学、株洲市第二中学)、江西(九江一中)等十四校高三第一次联考】已知函数
(其中
且
为常数,
为自然对数的底数,
).
(Ⅰ)若函数
的极值点只有一个,求实数
的取值范围;
(Ⅱ)当
时,若
(其中
)恒成立,求
的最小值
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列命题中,错误的是( )
A. 一条直线与两个平行平面中的一个相交,则必与另一个平面相交
B. 平行于同一平面的两条直线不一定平行
C. 如果平面
垂直,则过
内一点有无数条直线与
垂直.
D. 如果平面
不垂直于平面
,那么平面
内一定不存在直线垂直于平面![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某大学学生会为了调查了解该校大学生参与校健身房运动的情况,随机选取了100位大学生进行调查,调查结果统计如下:
参与 | 不参与 | 总计 | |
男大学生 | 30 | ||
女大学生 | 50 | ||
总计 | 45 | 100 |
(1)根据已知数据,把表格数据填写完整;
(2)能否在犯错误的概率不超过0.005的前提下认为参与校健身房运动与性别有关?请说明理由.
附:
,其中
.
| 0.050 | 0.025 | 0.010 | 0.005 | 0.001 |
| 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】科技创新在经济发展中的作用日益凸显.某科技公司为实现9000万元的投资收益目标,准备制定一个激励研发人员的奖励方案:当投资收益达到3000万元时,按投资收益进行奖励,要求奖金
(单位:万元)随投资收益
(单位:万元)的增加而增加,奖金总数不低于100万元,且奖金总数不超过投资收益的20%.
(1)现有三个奖励函数模型:①
,②
,③
,
.试分析这三个函数模型是否符合公司要求?
(2)根据(1)中符合公司要求的函数模型,要使奖金额达到350万元,公司的投资收益至少要达到多少万元?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com