【题目】某校在高二数学竞赛初赛考试后,对90分以上(含90分)的成绩进行统计,其频率分布直方图如图所示,若
分数段的学生人数为2.
![]()
(1)求该校成绩在
分数段的学生人数;
(2)估计90分以上(含90分)的学生成绩的众数、中位数和平均数(结果保留整数).
【答案】(1)40;(2)众数115、中位数113,平均数113.
【解析】
(1)先求得成绩在
内的频率,结合
分数段的人数即可求得成绩在
分数段的学生人数;
(2)根据频率分布直方图中最高矩形,即可得众数;从左至右,将小矩形面积求和,至面积和为0.5时,对应底边的数值即为中位数;将各小矩形面积乘以对应底边的中点值,求和即为平均数的估计值.
(1)∵
分数段的频率为
,
又
分数段的人数为2,
∴
分数段的参赛学生人数为
.
(2)根据频率分布直方图,最高小矩形底面中点值为115,所以90分以上(含90分)的学生成绩的众数的估计值为115,
从左依次计算各小矩形的面积为
,因而中位数的估计值为
,
平均数的估计值为
.
科目:高中数学 来源: 题型:
【题目】如图,已知
,
分别为椭圆
:
的上、下焦点,
是抛物线
:
的焦点,点
是
与
在第二象限的交点,且
.
![]()
(1)求椭圆
的方程;
(2)与圆
相切的直线
:
(其中
)交椭圆
于点
,
,若椭圆
上一点
满足
,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司计划购买1台机器,该种机器使用三年后即被淘汰.在购进机器时,可以一次性额外购买几次维修服务,每次维修服务费用200元,另外实际维修一次还需向维修人员支付小费,小费每次50元.在机器使用期间,如果维修次数超过购机时购买的维修服务次数,则每维修一次需支付维修服务费用500元,无需支付小费.现需决策在购买机器时应同时一次性购买几次维修服务,为此搜集并整理了100台这种机器在三年使用期内的维修次数,得下面统计表:
维修次数 | 8 | 9 | 10 | 11 | 12 |
频数 | 10 | 20 | 30 | 30 | 10 |
记x表示1台机器在三年使用期内的维修次数,y表示1台机器在维修上所需的费用(单位:元),
表示购机的同时购买的维修服务次数.
(1)若
=10,求y与x的函数解析式;
(2)若要求“维修次数不大于
”的频率不小于0.8,求n的最小值;
(3)假设这100台机器在购机的同时每台都购买10次维修服务,或每台都购买11次维修服务,分别计算这100台机器在维修上所需费用的平均数,以此作为决策依据,购买1台机器的同时应购买10次还是11次维修服务?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆
,点
为平面内一动点,以线段
为直径的圆内切于圆
,设动点
的轨迹为曲线
.
(Ⅰ)求曲线
的方程;
(Ⅱ)
是曲线
上的动点,且直线
经过定点
,问在
轴上是否存在定点
,使得
,若存在,请求出定点
,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】现需要设计一个仓库,它由上下两部分组成,上部分的形状是正四棱锥
,下部分的形状是正四棱柱
(如图所示),并要求正四棱柱的高
是正四棱锥的高
的4倍.
![]()
(1)若
则仓库的容积是多少?
(2)若正四棱锥的侧棱长为
,则当
为多少时,仓库的容积最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】从一批草莓中,随机抽取
个,其重量(单位:克)的频率分布表如下:
分组(重量) |
|
|
|
|
频数(个) |
|
|
|
|
已知从
个草莓中随机抽取一个,抽到重量在
的草莓的概率为
.
(1)求出
,
的值;
(2)用分层抽样的方法从重量在
和
的草莓中共抽取
个,再从这
个草莓中任取
个,求重量在
和
中各有
个的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】[选修4-4:坐标系与参数方程]
在直角坐标系
中,直线
的参数方程为
(
为参数),以原点为极点,
轴的正半轴为极轴,以相同的长度单位建立极坐标系,曲线
的极坐标方程为
.
(Ⅰ)求直线
的极坐标方程和曲线
的直角坐标方程;
(Ⅱ)已知
,直线
与曲线
交于
,
两点,若
,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】过圆
与
轴正半轴的交点A作圆O的切线
,M为
上任意一点,过M作圆O的另一条切线,切点为Q.当点M在直线
上运动时,△MAQ的垂心的轨迹方程为________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校设计了一个实验考察方案:考生从6道备选题中一次性随机抽取3题,按照题目要求独立完成全部实验操作,规定:至少正确完成其中2道题的便可通过.已知6道备选题中考生甲有4道题能正确完成,2道题不能完成,考生乙每题正确完成的概率都是
,且每题正确完成与否互不影响.
(1)求甲、乙两考生正确完成题数的分布列,并计算其数学期望;
(2)请分析比较甲、乙两考生的实验操作能力.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com