已知抛物线
,过
轴上一点
的直线与抛物线交于点
两点。
证明,存在唯一一点
,使得
为常数,并确定
点的坐标。
科目:高中数学 来源: 题型:解答题
已知椭圆C:
的离心率为
,
直线
:y=x+2与原点为圆心,以椭圆C的短轴长为直
径的圆相切.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点
的直线
与椭圆
交于
,
两点.设直线
的斜率
,在
轴上是否存在点
,使得
是以GH为底边的等腰三角形. 如果存在,求出实数
的取值范围,如果不存在,请说明理由.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在平面直角坐标系
中,点
为动点,
分别为椭圆
的左右焦点.已知△
为等腰三角形.(1)求椭圆的离心率
;(2)设直线
与椭圆相交于
两点,
是直线
上的点,满足
,求点
的轨迹方程.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
年
月
日
时
分
秒“嫦娥二号”探月卫星由长征三号丙运载火箭送入近地点高度约
公里、远地点高度约
万公里的直接奔月椭圆(地球球心
为一个焦点)轨道Ⅰ飞行。当卫星到达月球附近的特定位置时,实施近月制动及轨道调整,卫星变轨进入远月面
公里、近月面
公里(月球球心
为一个焦点)的椭圆轨道Ⅱ绕月飞行,之后卫星再次择机变轨进入以
为圆心、距月面
公里的圆形轨道Ⅲ绕月飞行,并开展相关技术试验和科学探测。已知地球半径约为
公里,月球半径约为
公里。
(Ⅰ)比较椭圆轨道Ⅰ与椭圆轨道Ⅱ的离心率的大小;
(Ⅱ)以
为右焦点,求椭圆轨道Ⅱ的标准方程。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,
为半圆,
为半圆直径,
为半圆圆心,且
,
为线段
的中点,已知
,曲线
过
点,动点
在曲线
上运动且保持
的值不变.
(I)建立适当的平面直角坐标系,求曲线
的方程;
(II)过点
的直线
与曲线
交于
两点,与
所在直线交于
点,
,
证明:
为定值.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图所示:已知过抛物线
的焦点F的直线
与抛物线相交于A,B两点。![]()
(1)求证:以AF为直径的圆与x轴相切;
(2)设抛物线
在A,B两点处的切线的交点为M,若点M的横坐标为2,求△ABM的外接圆方程;
(3)设过抛物线
焦点F的直线
与椭圆
的交点为C、D,是否存在直线
使得
,若存在,求出直线
的方程,若不存在,请说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,已知直线
与抛物线
相切于点
)且与
轴交于点
为坐标原点,定点B的坐标为
.![]()
(1)若动点
满足
|
=
,求点
的轨迹
.
(2)若过点
的直线
(斜率不等于零)与(1)中的轨迹
交于不同的两点
,试求
与
面积之比的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知点
是直角坐标平面内的动点,点
到直线
(
是正常数)的距离为
,到点
的距离为
,且
1.
(1)求动点P所在曲线C的方程;
(2)直线
过点F且与曲线C交于不同两点A、B,分别过A、B点作直线
的垂线,对应的垂足分别为
,求证
=
;
(3)记
,
,![]()
(A、B、
是(2)中的点),
,求
的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com