精英家教网 > 高中数学 > 题目详情
AB是过椭圆=1的一个焦点F的弦,若AB的倾斜角为,求弦AB的长.

解:不妨取F(1,0),∴直线AB的方程为y=x-1)代入椭圆方程并整理得19x2-30x-5=0.

Ax1y1),Bx2y2),则

AB=|x1-x2|=2.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)的两焦点与短轴的一个端点的连线构成等腰直角三角形,直线x-y+b=0是抛物线y2=4x的一条切线.
(Ⅰ)求椭圆的方程;
(Ⅱ)过点S(0,
1
3
)的动直线L交椭圆C于A、B两点.问:是否存在一个定点T,使得以AB为直径的圆恒过点T?若存在,求点T坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的两焦点与短轴的一个端点的连线构成等腰直角三角形,直线x-y+b=0是抛物线y2=4x的一条切线.
(1)求椭圆的方程;
(2)过点S(0,-
13
)
的动直线L交椭圆C于A、B两点,试问:在坐标平面上是否存在一个定点T,使得以AB为直径的圆恒过点T?若存在,求出点T的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

若AB是过椭圆
x2
a2
+
y2
b2
=1(a>b>0)
中心的一条弦,M是椭圆上任意一点,且AM,BM与坐标轴不平行,kAM,kBM分别表示直线AM,BM的斜率,则kAM•kBM=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0),F1(-1,0)为椭圆的左焦点,右焦点为F2,其短轴的一个端点和两个焦点构成等边三角形的三个顶点,点E(0,
1
2
).
(1)求椭圆C的方程;
(2)AB是椭圆C的一条过点F1且斜率为1的弦,求△ABF2的面积S;
(3)问是否存在直线l:kx+m,使l与椭圆C交于M、N两点,且(
EM
+
EN
)•(
EM
-
EN
)=0.若存在,求k的取值范围.若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设椭圆C:
x2
25
+
y2
9
=1
,F是右焦点,l是过点F的一条直线(不与y轴平行),交椭圆于A、B两点,l′是AB的中垂线,交椭圆的长轴于一点D,则
DF
AB
的值是
2
5
2
5

查看答案和解析>>

同步练习册答案