精英家教网 > 高中数学 > 题目详情

【题目】已知为坐标原点,抛物线的焦点坐标为,点在该抛物线上且位于轴的两侧,

(Ⅰ)证明:直线过定点

(Ⅱ)以为切点作的切线,设两切线的交点为,点为圆上任意一点,求的最小值.

【答案】(Ⅰ)证明见解析;(Ⅱ)2

【解析】

(Ⅰ)先求出抛物线的方程,然后设直线的方程为,设),联立直线和抛物线的方程可得,由韦达定理可得的值,再根据,可得出b的值,进而可得出直线恒过定点;

(Ⅱ)以为切点的切线方程为,以为切点的切线方程为,联立,解得,由(Ⅰ)知,所以两切线交点的轨迹方程为,进而可得出的最小值.

(Ⅰ)根据题意,,所以

故抛物线

由题意设直线的方程为

,消去整理得

显然

),则

所以

由题意得,解得(舍去).

所以直线的方程为,故直线过定点

(Ⅱ)因为,所以

故以为切点的切线方程为,即

为切点的切线方程为,即

联立,解得

又因为

所以两切线交点的轨迹方程为

因为圆心到直线的距离为3

所以圆上一点到直线的最小距离为

的最小值为2

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某中学高三(3)班全班50人参加了高考前的数学模拟测试,每名学生要在规定的2个小时内做一套高三模拟卷,现抽取10位学生的成绩,分为甲,乙两组,其分数如下表:

1

2

3

4

5

甲组

64

72

86

98

120

乙组

60

76

90

92

122

(Ⅰ)分别求出甲,乙两组学生考试所得分数的平均数及方差,并由此分析两组学生的成绩水平;

(Ⅱ)试估计全班有多少人及格(90分及以上为及格);

(Ⅲ)从该班级甲,乙两组中各随机抽取1名学生,对其考试成绩进行抽查,求两人考试分数之和大于等于180的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,设椭圆)的离心率是e,定义直线为椭圆的类准线,已知椭圆C类准线方程为,长轴长为4.

1)求椭圆C的方程;

2)点P在椭圆C类准线上(但不在y轴上),过点P作圆O的切线l,过点O且垂直于的直线l交于点A,问点A是否在椭圆C上?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是一个由正四棱锥和正四棱柱构成的组合体,正四棱锥的侧棱长为6为正四棱锥高的4倍.当该组合体的体积最大时,点到正四棱柱外接球表面的最小距离是( )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2020110日,引发新冠肺炎疫情的COVID-9病毒基因序列公布后,科学家们便开始了病毒疫苗的研究过程.但是类似这种病毒疫苗的研制需要科学的流程,不是一朝一夕能完成的,其中有一步就是做动物试验.已知一个科研团队用小白鼠做接种试验,检测接种疫苗后是否出现抗体.试验设计是:每天接种一次,3天为一个接种周期.已知小白鼠接种后当天出现抗体的概率为,假设每次接种后当天是否出现抗体与上次接种无关.

1)求一个接种周期内出现抗体次数的分布列;

2)已知每天接种一次花费100元,现有以下两种试验方案:

①若在一个接种周期内连续2次出现抗体即终止本周期试验,进行下一接种周期,试验持续三个接种周期,设此种试验方式的花费为元;

②若在一个接种周期内出现2次或3次抗体,该周期结束后终止试验,已知试验至多持续三个接种周期,设此种试验方式的花费为元.

比较随机变量的数学期望的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四面体ABCD的三组对棱的长分别相等,依次为3,4,x,则x的取值范围是  

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】0,1,2,3,4,5,6中取出三个不同的数字组成一个三位数,则这个三位数的各个位上的数字之和为奇数的取法共有_________种.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,曲线C的参数方程为(为参数).以原点O为极点,x轴非负半轴为极轴建立极坐标系,直线l的极坐标方程为.

1)求曲线C的普通方程和直线l的直角坐标方程;

2)点P是曲线C上的动点,求P到直线l的距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱柱中,四边形ABCD为平行四边形,且点在底面上的投影H恰为CD的中点.

1)棱BC上存在一点N,使得AD⊥平面,试确定点N的位置,说明理由;

2)求三棱锥的体积.

查看答案和解析>>

同步练习册答案