【题目】已知椭圆
的中心为原点
,离心率
,其中一个焦点的坐标为![]()
(Ⅰ)求椭圆
的标准方程;
(Ⅱ)当点
在椭圆
上运动时,设动点
的运动轨迹为
若点
满足:
其中
是
上的点.直线
的斜率之积为
,试说明:是否存在两个定点
,使得
为定值?若存在,求
的坐标;若不存在,说明理由.
【答案】(Ⅰ)
(Ⅱ)详见解析.
【解析】试题分析: (Ⅰ)根据离心率和焦点坐标以及
求出椭圆的标准方程;(Ⅱ)由于点
在曲线
上运动时,动点
的轨迹
的方程为
,通过
可建立点T和点M,N坐标之间的关系式,通过直线
的斜率之积为定值,又得到另外一个关系式,且点M,N的坐标满足椭圆的方程,均为二次,因此给两等式分别平方,再对应系数比为1:2,相加即可得到关于x,y的方程,即点T的轨迹为椭圆,两个定点为焦点.
试题解析:(Ⅰ)由题意知,
所以
所以![]()
故椭圆
的方程为![]()
(Ⅱ)设
则![]()
因为点
在椭圆
上运动,所以![]()
故动点
的轨迹
的方程为![]()
由
得
![]()
![]()
设
分别为直线
的斜率,由已知条件知
,所以![]()
因为点
在椭圆
上,所以![]()
故
![]()
从而知
点是椭圆
上的点,所以,存在两个定点
且为椭圆
的两个焦点,使得
为定值.其坐标分别为![]()
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系
中,曲线
:
,曲线
:
(
为参数), 以坐标原点
为极点,
轴的正半轴为极轴建立极坐标系.
(1)求曲线
,
的极坐标方程;
(2)若射线
:
(
)分别交
,
于
两点, 求
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校为选拔参加“央视猜灯谜大赛”的队员,在校内组织猜灯谜竞赛.规定:第一阶段知识测试成绩不小于
分的学生进入第二阶段比赛.现有
名学生参加知识测试,并将所有测试成绩绘制成如下所示的频率分布直方图.
![]()
(1)估算这
名学生测试成绩的中位数,并求进入第二阶段比赛的学生人数;
(2)将进入第二阶段的学生分成若干队进行比赛.现甲、乙两队在比赛中均已获得
分,进入最后强答阶段.抢答规则:抢到的队每次需猜
条谜语,猜对
条得
分,猜错
条扣
分.根据经验,甲队猜对每条谜语的概率均为
,乙队猜对每条谜语的概率均为
,猜对第
条的概率均为
.若这两条抢到答题的机会均等,您做为场外观众想支持这两队中的优胜队,会把支持票投给哪队?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4—4:坐标系与参数方程
在平面直角坐标系
中曲线
经伸缩变换
后得到曲线
,在以
为极点,
轴的正半轴为极轴的极坐标系中,曲线
的极坐标方程为
.
(1)求曲线
的参数方程和
的直角坐标方程;
(2)设
为曲线
上的一点,又
向曲线
引切线,切点为
,求
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
=(cosα,sinα),
=(cosβ,sinβ),其中0<α<β<π.
(1)求证:
与
互相垂直;
(2)若k
与
﹣k
的长度相等,求β﹣α的值(k为非零的常数).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为推行“新课堂”教学法,某化学老师分别用传统教学和“新课堂”两种不同的教学方式,在甲、乙两个平行班进行教学实验,为了解教学效果,期中考试后,分别从两个班级中各随机抽取
名学生的成绩进行统计,作出的茎叶图如下图,记成绩不低于
分者为“成绩优良”.
![]()
(1)分别计算甲、乙两班
个样本中,化学分数前十的平均分,并据此判断哪种教学方式的教学效果更
佳;
(2)甲、乙两班
个样本中,成绩在
分以下(不含
分)的学生中任意选取
人,求这
人来自不同班级的概率;
(3)由以上统计数据填写下面
列联表,并判断能否在犯错误的概率不超过
的前提下认为“成绩优良与教学方式有关”?
甲班 | 乙班 | 总计 | |
成绩优良 | |||
成绩不优良 | |||
总计 |
附: ![]()
独立性检验临界值表:
|
|
|
|
|
|
|
|
|
|
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(文科)已知的椭圆
的左、右两个焦点分别为
,上顶点
,
是正三角形且周长为6.
(1)求椭圆
的标准方程及离心率;
(2)
为坐标原点,
是直线
上的一个动点,求
的最小值,并求出此时点
的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱锥P-ABC中,PA⊥AB,PA⊥BC,AB⊥BC,PA=AB=BC=2,D为线段AC的中点,E为线段PC上一点.
![]()
(1)求证:PA⊥BD;
(2)求证:平面BDE⊥平面PAC;
(3)当PA∥平面BDE时,求三棱锥E-BCD的体积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com