【题目】在△ABC中,角A、B、C的对边分别为a、b、c(a<b<c).已知向量
=(a,c),
=(cosC,cosA)满足
=
(a+c).
(1)求证:a+c=2b;
(2)若2csinA﹣
a=0,且c﹣a=8,求△ABC的面积S.
【答案】
(1)证明:∵向量
=(a,c),
=(cosC,cosA)满足
=
(a+c).
∴acosC+ccosA=
(a+c),
∴a×
+c×
=
,
∴2b=a+c
(2)解:∵2csinA﹣
a=0,
∴2sinCsinA﹣
sinA=0,
∵A∈(0,π),
∴sinA≠0,
∴sinC=
,
又a<b<c,
∴C为钝角.
∴cosC= ![]()
∴c2=a2+b2﹣2abcosC=a2+b2+ab,与c﹣a=8,2b=a+c.
联立解得a=6,b=10,c=14.
∴S△ABC=
absinC=
=15 ![]()
【解析】(1)利用数量积运算性质、余弦定理即可证明.(2)由2csinA﹣
a=0,利用正弦定理可得2sinCsinA﹣
sinA=0,化为sinC=
,又a<b<c,可得C为钝角.cosC=
,利用余弦定理可得:c2=a2+b2﹣2abcosC=a2+b2+ab,与c﹣a=8,2b=a+c联立解出即可得出.
【考点精析】掌握正弦定理的定义和余弦定理的定义是解答本题的根本,需要知道正弦定理:
;余弦定理:
;
;
.
科目:高中数学 来源: 题型:
【题目】设函数f(x)=﹣2cosx﹣x+(x+1)ln(x+1),g(x)=k(x2+
).其中k≠0.
(1)讨论函数g(x)的单调区间;
(2)若存在x1∈(﹣1,1],对任意x2∈(
,2],使得f(x1)﹣g(x2)<k﹣6成立,求k的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知复数z1,z2在复平面内对应的点分别为A(-2,1),B(a,3).
(1)若|z1-z2|=
,求a的值;
(2)复数z=z1·z2对应的点在第一、三象限的角平分线上,求a的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若根据10名儿童的年龄x(岁)和体重y(kg)数据用最小二乘法得到用年龄预报体重的回归方程是
=2x+7.已知这10名儿童的年龄分别是2岁、3岁、3岁、5岁、2岁、6岁、7岁、3岁、4岁、5岁,则这10名儿童的平均体重大约是( )
A. 14 kg B. 15 kg
C. 16 kg D. 17 kg
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,已知椭圆
=1(a>b>0)的离心率为
,长轴长为4,过椭圆的左顶点A作直线l,分别交椭圆和圆x2+y2=a2于相异两点P,Q. ![]()
(1)若直线l的斜率为
,求
的值;
(2)若
=λ
,求实数λ的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出以下命题,其中真命题的个数是( )
①若“
或
”是假命题,则“
且
”是真命题;
②命题“若
,则
或
”为真命题;
③若
,则
!
④直线
与双曲线
交于
,
两点,若
,则这样的直线有3条;
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com