精英家教网 > 高中数学 > 题目详情
已知数列{an}满足an+1+an=4n-3(n∈N*).
(1)若数列{an}是等差数列,求a1的值;(2)当a1=2时,求数列{an}的前n项和Sn
(3)若对任意n∈N*,都有≥5成立,求a1的取值范围.
【答案】分析:(1)由等差数列的定义,若数列{an}是等差数列,则an=a1+(n-1)d,an+1=a1+nd.结合an+1+an=4n-3,得即可解得首项a1的值;
(2)由an+1+an=4n-3(n∈N*),用n+1代n得an+2+an+1=4n+1(n∈N*).两式相减,得an+2-an=4.从而得出数列{a2n-1}是首项为a1,公差为4的等差数列.进一步得到数列{a2n}是首项为a2,公差为4的等差数列.下面对n进行分类讨论:①当n为奇数时,②当n为偶数时,分别求和即可;
(3)由(2)知,an=(k∈Z).①当n为奇数时,②当n为偶数时,分别解得a1的取值范围,最后综上所述,即可得到a1的取值范围.
解答:解:(1)若数列{an}是等差数列,则an=a1+(n-1)d,an+1=a1+nd.
由an+1+an=4n-3,得(a1+nd)+[a1+(n-1)d]=4n-3,即2d=4,2a1-d=-3,解得d=2,a1=
(2)由an+1+an=4n-3(n∈N*),得an+2+an+1=4n+1(n∈N*).
两式相减,得an+2-an=4.
所以数列{a2n-1}是首项为a1,公差为4的等差数列.
数列{a2n}是首项为a2,公差为4的等差数列.
由a2+a1=1,a1=2,得a2=-1.
所以an=(k∈Z).
①当n为奇数时,an=2n,an+1=2n-3.Sn=a1+a2+a3+…+an=(a1+a2)+(a3+a4)+…+(an-2+an-1)+an
=1+9+…+(4n-11)+2n=+2n=
②当n为偶数时,Sn=a1+a2+a3+…+an=(a1+a2)+(a3+a4)+…+(an-1+an)═1+9+…+(4n-7)=
所以Sn=(k∈Z).
(3)由(2)知,an=(k∈Z).
①当n为奇数时,an=2n-2+a1,an+1=2n-1-a1
≥5,得a12-a1≥-4n2+16n-10.
令f(n)=-4n2+16n-10=-4(n-2)2+6.
当n=1或n=3时,f(n)max=2,所以a12-a1≥2.
解得a1≥2或a1≤-1.
②当n为偶数时,an=2n-3-a1,an+1=2n+a1
≥5,得a12+3a1≥-4n2+16n-12.
令g(n)=-4n2+16n-12=-4(n-2)2+4.
当n=2时,g(n)max=4,所以a12+3a1≥4.
解得a1≥1或a1≤-4.
综上所述,a1的取值范围是(-∞,-4]∪[2,+∞).
点评:本小题主要考查等差数列的通项公式、等差数列的前n项和、不等式的解法、数列与不等式的综合等基础知识,考查运算求解能力,考查化归与转化思想.属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}满足:a1=1且an+1=
3+4an
12-4an
, n∈N*

(1)若数列{bn}满足:bn=
1
an-
1
2
(n∈N*)
,试证明数列bn-1是等比数列;
(2)求数列{anbn}的前n项和Sn
(3)数列{an-bn}是否存在最大项,如果存在求出,若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足
1
2
a1+
1
22
a2+
1
23
a3+…+
1
2n
an=2n+1
则{an}的通项公式
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足:a1=
3
2
,且an=
3nan-1
2an-1+n-1
(n≥2,n∈N*).
(1)求数列{an}的通项公式;
(2)证明:对于一切正整数n,不等式a1•a2•…an<2•n!

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足an+1=|an-1|(n∈N*
(1)若a1=
54
,求an
(2)若a1=a∈(k,k+1),(k∈N*),求{an}的前3k项的和S3k(用k,a表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•北京模拟)已知数列{an}满足an+1=an+2,且a1=1,那么它的通项公式an等于
2n-1
2n-1

查看答案和解析>>

同步练习册答案