【题目】过抛物线
的焦点为F且斜率为k的直线l交曲线C于
、
两点,交圆
于M,N两点(A,M两点相邻).
(1)求证:
为定值;
(2)过A,B两点分别作曲线C的切线
,
,两切线交于点P,求
与
面积之积的最小值.
科目:高中数学 来源: 题型:
【题目】设点
分别是棱长为2的正方体
的棱
的中点.如图,以
为坐标原点,射线
、
、
分别是
轴、
轴、
轴的正半轴,建立空间直角坐标系.
![]()
(1)求向量
与
的数量积;
(2)若点
分别是线段
与线段
上的点,问是否存在直线
,
平面
?若存在,求点
的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C:
1(a>b>0)的左右焦点分别为F1,F2,离心率为
,A为椭圆C上一点,且AF2⊥F1F2,且|AF2|
.
(1)求椭圆C的方程;
(2)设椭圆C的左右顶点为A1,A2,过A1,A2分别作x轴的垂线 l1,l2,椭圆C的一条切线l:y=kx+m(k≠0)与l1,l2交于M,N两点,试探究![]()
是否为定值,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设数列
的前
项和为
,且
.
(1)求出
,
,
的值,并求出
及数列
的通项公式;
(2)设
,求数列
的前
项和
;
(3)设
,在数列
中取出
(
且
)项,按照原来的顺序排列成一列,构成等比数列
,若对任意的数列
,均有
,试求
的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】高铁是我国国家名片之一,高铁的修建凝聚着中国人的智慧与汗水.如图所示,B、E、F为山脚两侧共线的三点,在山顶A处测得这三点的俯角分别为
、
、
,计划沿直线BF开通穿山隧道,现已测得BC、DE、EF三段线段的长度分别为3、1、2.
![]()
(1)求出线段AE的长度;
(2)求出隧道CD的长度.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,若在区间
内有且只有一个实数
,使得
成立,则称函数
在区间
内具有唯一零点.
(1)判断函数
在区间
内是否具有唯一零点,说明理由:
(2)已知向量
,
,
,证明
在区间
内具有唯一零点.
(3)若函数
在区间
内具有唯一零点,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设
,
.已知函数
,
.
(Ⅰ)求
的单调区间;
(Ⅱ)已知函数
和
的图象在公共点(x0,y0)处有相同的切线,
(i)求证:
在
处的导数等于0;
(ii)若关于x的不等式
在区间
上恒成立,求b的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com