(本题满分12分)
在△ABC中,角A、B、C所对的边分别为a、b、c(其中
),设向量
,
,且向量
为单位向量.(模为1的向量称作单位向量)
(1)求∠B的大小;
(2)若
,求△ABC的面积.
(1)
;(2)C=
,△ABC的面积=
。
【解析】本试题主要是考查了向量的数量积和解三角形中边角转换的运用。
(1)根据两个向量的坐标,以及差向量的模长为1,结合数量积的性质可知得到角B的值。
(2)正弦定理可知sinA,然后又
,∴
,结合正弦面积公式得到结论。
解:(1)
--------------------2分
∴
--------------------4分
又B为三角形的内角,由
,故
--------------------6分
(2)根据正弦定理,知
,即
,
∴
,又
,∴
--------------------9分
故C=
,△ABC的面积=
----------------------12分
科目:高中数学 来源: 题型:
| π | 2 |
查看答案和解析>>
科目:高中数学 来源:2012-2013学年上海市金山区高三上学期期末考试数学试卷(解析版) 题型:解答题
(本题满分12分,第1小题6分,第2小题6分)
已知集合A={x| | x–a | < 2,xÎR
},B={x|
<1,xÎR }.
(1) 求A、B;
(2) 若
,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源:2012-2013学年安徽省高三10月月考理科数学试卷(解析版) 题型:解答题
(本题满分12分)
设函数
(
,
为常数),且方程
有两个实根为
.
(1)求
的解析式;
(2)证明:曲线
的图像是一个中心对称图形,并求其对称中心.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年重庆市高三第二次月考文科数学 题型:解答题
(本题满分12分,(Ⅰ)小问4分,(Ⅱ)小问6分,(Ⅲ)小问2分.)
如图所示,直二面角
中,四边形
是边长为
的正方形,
,
为
上的点,且
⊥平面![]()
(Ⅰ)求证:
⊥平面![]()
(Ⅱ)求二面角
的大小;
(Ⅲ)求点
到平面
的距离.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com