【题目】已知实数x,y满足条件
,则点
的运动轨迹是( )
A.椭圆B.双曲线C.抛物线D.圆
【答案】A
【解析】
先证明:当点
与一个定点的距离和它到一条定直线的距离的比是常数
时,这个点的轨迹是椭圆,然后转化已知条件为动点与定点和定直线的距离问题,然后判断即可.
先证明:当点
与一个定点的距离和它到一条定直线的距离的比是常数
时,这个点的轨迹是椭圆.
设点
与定点
的距离和它到定直线
的距离的比是常数
,
设
是点
到直线
的距离,
根据题意,所求轨迹就是集合
,由此得
.
将上式两边平方,并化简得
.
设
,就可化成
,这是椭圆的标准方程.
故当点
与一个定点的距离和它到一条定直线的距离的比是常数
时,这个点的轨迹是椭圆.
由已知实数
满足条件
,
即
,
表达式的含义是点
到定点
与到直线
的距离的比为
,由上述证明的结论可得,轨迹是椭圆.
故选:A.
科目:高中数学 来源: 题型:
【题目】已知椭圆
的右焦点为
,
是椭圆
上一点,
轴,
.
(1)求椭圆
的标准方程;
(2)若直线
与椭圆
交于
、
两点,线段
的中点为
,
为坐标原点,且
,求
面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,
.
(Ⅰ)若
存在单调增区间,求
的取值范围;
(Ⅱ)是否存在实数
,使得方程
在区间
内有且只有两个不相等的实数根?若存在,求出
的取值范围?若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设甲、乙、丙三个乒乓球协会分别选派3,1,2名运动员参加某次比赛,甲协会运动员编号分别为
,
,
,乙协会编号为
,丙协会编号分别为
,
,若从这6名运动员中随机抽取2名参加双打比赛.
(1)用所给编号列出所有可能抽取的结果;
(2)求丙协会至少有一名运动员参加双打比赛的概率;
(3)求参加双打比赛的两名运动员来自同一协会的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的离心率为
,椭圆上的点到右焦点
的距离的最大值为3.
(1)求椭圆
的方程;
(2)若过椭圆
的右焦点
作倾斜角不为零的直线
与椭圆
交于两点
,设线段
的垂直平分线在
轴上的截距为
,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市一次全市高中男生身高统计调查数据显示:全市100000名男生的身高服从正态分布N(168,16).现从某学校高三年级男生中随机抽取50名测量身高,测量发现被测学生身高全部介于160 cm和184 cm之间,将测量结果按如下方式分成6组:第1组[160,164),第2组[164,168),…,第6组[180,184],如图是按上述分组方法得到的频率分布直方图.
![]()
(1)由频率分布直方图估计该校高三年级男生平均身高状况;
(2)求这50名男生身高在172 cm以上(含172 cm)的人数;
(3)在这50名男生身高在172 cm以上(含172 cm)的人中任意抽取2人,将该2人中身高排名(从高到低)在全市前130名的人数记为ξ,求ξ的数学期望.
参考数据:若ξ~N(μ,σ2),则P(μ-σ<ξ≤μ+σ)=0.6826,P(μ-2σ<ξ≤μ+2σ)=0.9544,P(μ-3σ<ξ≤μ+3σ)=0.9974.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着智能手机的普及,使用手机上网成为了人们日常生活的一部分,很多消费者对手机流量的需求越来越大.某通信公司为了更好地满足消费者对流量的需求,准备推出一款流量包.该通信公司选了人口规模相当的
个城市采用不同的定价方案作为试点,经过一个月的统计,发现该流量包的定价:
(单位:元/月)和购买总人数
(单位:万人)的关系如表:
定价x(元/月) | 20 | 30 | 50 | 60 |
年轻人(40岁以下) | 10 | 15 | 7 | 8 |
中老年人(40岁以及40岁以上) | 20 | 15 | 3 | 2 |
购买总人数y(万人) | 30 | 30 | 10 | 10 |
(Ⅰ)根据表中的数据,请用线性回归模型拟合
与
的关系,求出
关于
的回归方程;并估计
元/月的流量包将有多少人购买?
(Ⅱ)若把
元/月以下(不包括
元)的流量包称为低价流量包,
元以上(包括
元)的流量包称为高价流量包,试运用独立性检验知识,填写下面列联,并通过计算说明是否能在犯错误的概率不超过
的前提下,认为购买人的年龄大小与流量包价格高低有关?
定价x(元/月) | 小于50元 | 大于或等于50元 | 总计 |
年轻人(40岁以下) | |||
中老年人(40岁以及40岁以上) | |||
总计 |
参考公式:其中
![]()
其中![]()
参考数据:
| 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com