【题目】过曲线C1:
-
=1(a>0,b>0)的左焦点F1作曲线C2:x2+y2=a2的切线,设切点为M,直线F1M交曲线C3:y2=2px(p>0)于点N,其中曲线C1与C3有一个共同的焦点,若|MF1|=|MN|,则曲线C1的离心率为( )
A.
B.
-1 C.
+1 D. ![]()
【答案】D
【解析】设双曲线的右焦点为F2,则F2的坐标为(c,0).
由题意知F2也是C3的焦点,所以C3:y2=4cx.连接OM,NF2,因为O为F1F2的中点,M为F1N的中点,所以OM为△NF1F2的中位线,所以OM∥NF2.因为|OM|=a,所以|NF2|=2a.又NF2⊥NF1,|F1F2|=2c,所以|NF1|=2b.设N(x,y),则由抛物线的定义可得|NF2|=x+c=2a,所以x=2a-c.过点F1作x轴的垂线,点N到该垂线的距离为2a,由y2+4a2=4b2,即4c(2a-c)+4a2=4(c2-a2),得e2-e-1=0,解得e=
(负值舍去),故选D.
科目:高中数学 来源: 题型:
【题目】现有一个以
、
为半径的扇形池塘,在
、
上分别取点
、
,作
、
分别交弧
于点
、
,且
,现用渔网沿着
、
、
、
将池塘分成如图所示的养殖区域.已知
,
,
(
).
(1)若区域Ⅱ的总面积为
,求
的值;
(2)若养殖区域Ⅰ、Ⅱ、Ⅲ的每平方千米的年收入分别是30万元、40万元、20万元,试问:当
为多少时,年总收入最大?
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知过点A(0,1)且斜率为k的直线l与圆C:(x-2)2+(y-3)2=1交于M,N两点.
(1)求k的取值范围;
(2)若
=12,其中O为坐标原点,求|MN|.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的中心在坐标原点,长轴在
轴上,
分别在其左、右焦点,
在椭圆上任意一点,且
的最大值为1,最小值为
.
(1)求椭圆
的方程;
(2)设
为椭圆
的右顶点,直线
是与椭圆交于
两点的任意一条直线,若
,证明直线
过定点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在某次水下科研考察活动中,需要潜水员潜入水深为60米的水底进行作业,根据已往经验,潜水员下潜的平均速度为
(米/单位时间),每单位时间的用氧量为
(升),在水底作业10个单位时间,每单位时间用氧量为
(升),返回水面的平均速度为
(米/单位时间),每单位时间用氧量为
(升),记该潜水员在此次考察活动中的总用氧量为
(升).
(1)求
关于
的函数关系式;
(2)若
,求当下潜速度
取什么值时,总用氧量最少.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知右焦点为
的椭圆
过点
,且椭圆
关于直线
对称的图形过坐标原点.
(1)求椭圆
的方程;
(2)过点
且不垂直于
轴的直线与椭圆
交于
,
两点,点
关于
轴的对称点为
,证明:直线
与
轴的交点为
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com