【题目】已知抛物线
的焦点为
,直线
与抛物线
交于
两点.
(1)若
过点
,抛物线
在点
处的切线与在点
处的切线交于点
.证明:点
在定直线上.
(2)若
,点
在曲线
上,
的中点均在抛物线
上,求
面积的取值范围.
【答案】(1)证明见解析;(2)
.
【解析】
(1) 设
,
,设直线
的方程为
,与抛物线方程联立可得
,求出抛物线在点
处的切线方程,和在
点处的切线方程,联立可得答案.
(2) 设
,
的中点分别为
,
,可得
,
,
轴,![]()
,
,
的面积
,从而可求出三角形的面积的范围.
(1)证明:易知
,设
,
.
由题意可知直线
的斜率存在,故设其方程为
.
由
,得
,所以
.
由
,得
,
,则
,
直线
的方程为
,即
,①
同理可得直线
的方程为
,②
联立①②,可得
.
因为
,所以
,故点
在定直线
上.
(2)解:设
,
的中点分别为
,
.
因为
得中点均在抛物线
上,所以
为方程
的解,
即方程
的两个不同的实根,
则
,
,
,
即
,
所以
的中点
的横坐标为
,则
轴.
则![]()
,
,
所以
的面积
.
由
,得
,
所以
,
因为
,所以
,
所以
面积的取值范围为
.
科目:高中数学 来源: 题型:
【题目】为满足人民群众便利消费、安全消费、放心消费的需求,某社区农贸市场管理部门规划建造总面积为
的新型生鲜销售市场.市场内设蔬菜水果类和肉食水产类店面共80间.每间蔬菜水果类店面的建造面积为
,月租费为
万元;每间肉食水产店面的建造面积为
,月租费为0.8万元.全部店面的建造面积不低于总面积的80%,又不能超过总面积的85%.①两类店面间数的建造方案为_________种.②市场建成后所有店面全部租出,为保证任何一种建设方案平均每间店面月租费不低于每间蔬菜水果类店面月租费的90%,则
的最大值为_________万元.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,曲线
的参数方程为
(
为参数),以坐标原点
为极点,
轴的非负半轴为极轴且取相同的单位长度建立极坐标系,直线
的极坐标方程为
.
(1)写出曲线
的普通方程和直线
的直角坐标方程;
(2)若直线
与曲线
相交于
、
两点,求
的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图是某市10月1日至14日的空气质量指数趋势图,空气质量指数越小表示空气质量越好,空气质量指数小于100表示空气质量优良,下列叙述中不正确的是( )
![]()
A.这14天中有7天空气质量优良
B.这14天中空气质量指数的中位数是103
C.从10月11日到10月14日,空气质量越来越好
D.连续三天中空气质量指数方差最大的是10月5日至10月7日
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某工厂共有50位工人组装某种零件.下面的散点图反映了工人们组装每个零件所用的工时(单位:分钟)与人数的分布情况.由散点图可得,这50位工人组装每个零件所用工时的中位数为___________.若将500个要组装的零件分给每个工人,让他们同时开始组装,则至少要过_________分钟后,所有工人都完成组装任务.(本题第一空2分,第二空3分)
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某篮球队甲、乙两名运动员练习罚球,每人练习10组,每组罚球40个.命中个数的茎叶图如图,则下面结论中错误的一个是( )
![]()
A. 甲的极差是29 B. 甲的中位数是24
C. 甲罚球命中率比乙高 D. 乙的众数是21
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,内角A,B,C所对的边分别为a,b,c,且c(sinC-sinA)=(sinA+sinB) (b - a).
(1)求B;
(2)若c=8,点M,N是线段BC的两个三等分点,
,求AM的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某大学高等数学这学期分别用
两种不同的数学方式试验甲、乙两个大一新班(人数均为
人,入学数学平均分和优秀率都相同;勤奋程度和自觉性都一样).现随机抽取甲、乙两班各
名的高等数学期末考试成绩,得到茎叶图:
![]()
(1)学校规定:成绩不得低于85分的为优秀,请填写下面的
列联表,并判断“能否在犯错误率的概率不超过0.025的前提下认为成绩优异与教学方式有关?”
下面临界值表仅供参考:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(参考方式:
,其中
)
(2)现从甲班高等数学成绩不得低于80分的同学中随机抽取两名同学,求成绩为86分的同学至少有一个被抽中的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】足球比赛中,一队在本方罚球区内犯规,会被判罚点球,点球是进攻方非常有效的得分手段.研究机构对某位足球队员的1000次点球训练进行了统计分析,以帮助球员提高点球的命中率.如图,将球门框内的区域分成9个区域(区域代码为1—9,球门框外的区域记做区域0),统计球员射点球时射中10个区域次数和进球次数(即使射中球门框内,也可能被守门员扑出),得到如下的两个频率分布条形图:
![]()
![]()
(其中射中率
,得分率
)
(1)根据上述频率分布条形图,求射中球门框内时,各区域进球数的平均数(结果保留两位小数)和中位数;
(2)以该队员这1000次点球练习的进球频率作为他在比赛中射点球时进球的概率,设他在三次射点球时进球数为
,求
的分布列和期望.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com