【题目】在平面直角坐标系
中,曲线
的参数方程为
(
为参数),曲线
的参数方程为
(
为参数).
(1)将
,
的方程化为普通方程,并说明它们分别表示什么曲线?
(2)以坐标原点为极点,以
轴的正半轴为极轴,建立极坐标系,已知直线
的极坐标方程为
.若
上的点
对应的参数为
,点
在
上,点
为
的中点,求点
到直线
距离的最小值.
科目:高中数学 来源: 题型:
【题目】已知四棱锥
的底面为平行四边形,且
,
,
分别为
中点,过
作平面
分别与线段
相交于点
.
![]()
(Ⅰ)在图中作出平面
使面
‖
(不要求证明);
(II)若
,在(Ⅰ)的条件下求多面体
的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知向量
,
,
,
,函数
,
的最小正周期为
.
(1)求
的单调增区间;
(2)方程
;在
上有且只有一个解,求实数n的取值范围;
(3)是否存在实数m满足对任意x1∈[-1,1],都存在x2∈R,使得
+
+m(
-
)+1>f(x2)成立.若存在,求m的取值范围;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的左、右焦点分别为
,点
也为抛物线
的焦点.(1)若
为椭圆
上两点,且线段
的中点为
,求直线
的斜率;
(2)若过椭圆
的右焦点
作两条互相垂直的直线分别交椭圆于
和
,设线段
的长分别为
,证明
是定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】燕山公园计划改造一块四边形区域
铺设草坪,其中
百米,
百米,
,
,草坪内需要规划4条人行道
以及两条排水沟
,其中
分别为边
的中点.
![]()
(1)若
,求排水沟
的长;
(2)当
变化时,求
条人行道总长度的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某商场举行购物抽奖活动,抽奖箱中放有编号分别为
的五个小球.小球除编号不同外,其余均相同.活动规则如下:从抽奖箱中随机抽取一球,若抽到的小球编号为
,则获得奖金
元;若抽到的小球编号为偶数,则获得奖金
元;若抽到其余编号的小球,则不中奖.现某顾客依次有放回的抽奖两次.
(1)求该顾客两次抽奖后都没有中奖的概率;
(2)求该顾客两次抽奖后获得奖金之和为
元的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了调查甲、乙两个网站受欢迎的程度,随机选取了14天,统计上午8:00-10:00间各自的点击量:
甲:73,24,58,72,64,38,66,70,20,41,55,67,8,25
乙:12,37,21,5,54,42,61,45,19,6,71,36,42,14
(1)请用茎叶图表示上面的数据.
![]()
(2)甲网站点击量在[10,40]间的频率是多少?
(3)甲、乙两个网站哪个更受欢迎?并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com