【题目】如图,在平面直角坐标系
中,过
轴正方向上一点
任作一直线,与抛物线
相交于
两点,一条垂直于
轴的直线分别与线段
和直线
交于点
.
![]()
(1) 若
,求
的值;
(2) 若
,
为线段
的中点,求证: 直线
与该抛物线有且仅有一个公共点.
(3) 若
,直线
的斜率存在,且与该抛物线有且仅有一个公共点,试问
是否一定为线段
的中点? 说明理由.
【答案】(1)
;(2) 证明见解析;(3)是,理由见解析.
【解析】
(1)设
,
,
,则
,联立直线方程和抛物线方程,消去
后利用韦达定理可得关于
的方程,从而可求
的值.
(2)设
,用
表示直线
的方程,联立该直线的方程和抛物线的方程后可得该方程组有且只有一组解,故直线
与抛物线相切.
(3)设
,利用(2)的结果可得切线
的方程,求出
的坐标和直线
的方程后,联立直线
的方程和抛物线的方程,消去
后利用韦达定理可求
中点的横坐标,可证它就是
的横坐标,从而
一定为线段
的中点.
(1) 设
,
,![]()
由
得
,故
,从而
.
又
,故
,解得
或
,
舍去负值,得
.
(2)由(1)得,
,故
,故
.
设
在
上,且满足
,又
,
故直线
的方程为
,
而
.
故
,
由
得
,故方程组有唯一解,
故直线
与该抛物线有且仅有一个公共点.
(3)设
,这里
,
由(2)知过
与
有且仅有一个公共点的斜率存在的直线必为
.
令
得
,故
,
又
,所以
.
由
,故![]()
这样
是
的中点.
科目:高中数学 来源: 题型:
【题目】将数列
中的所有项按第一行排3项,以下每一行比上一行多一项的规则排成如下数表:
![]()
……
记表中的第一列数
,
,
,…,构成数列
.
(1)设
,求m的值;
(2)若
,对于任何
,都有
,且
.求数列
的通项公式.
(3)对于(2)中的数列
,若上表中每一行的数按从左到右的顺序均构成公比为q(
)的等比数列,且
,求上表中第k(
)行所有项的和
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=2x-
,x∈(0,1].
(1)当a=-1时,求函数y=f(x)的值域;
(2)若函数y=f(x)在x∈(0,1]上是减函数,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】班主任为了对本班学生的考试成绩进行分析,决定从本班24名女同学,18名男同学中随机抽取一个容量为7的样本进行分析.
(1)如果按照性别比例分层抽样,可以得到多少个不同的样本?(写出算式即可,不必计算出结果)
(2)如果随机抽取的7名同学的数学,物理成绩(单位:分)对应如下表:
学生序号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
数学成绩 | 60 | 65 | 70 | 75 | 85 | 87 | 90 |
物理成绩 | 70 | 77 | 80 | 85 | 90 | 86 | 93 |
①若规定85分以上(包括85分)为优秀,从这7名同学中抽取3名同学,记3名同学中数学和物理成绩均为优秀的人数为
,求
的分布列和数学期望;
②根据上表数据,求物理成绩
关于数学成绩
的线性回归方程(系数精确到0.01);若班上某位同学的数学成绩为96分,预测该同学的物理成绩为多少分?
附:线性回归方程
,
其中
,
.
|
|
|
|
76 | 83 | 812 | 526 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在一个给定的正
边形的顶点中随机地选取三个不同的顶点,任何一种选法的可能性是相等的,则正多边形的中心位于所选三个点构成的三角形内部的概率为______.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义符号函数
,已知
,
.
(1)求
关于
的表达式,并求
的最小值.
(2)当
时,函数
在
上有唯一零点,求
的取值范围.
(3)已知存在
,使得
对任意的
恒成立,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于项数为m(
且
)的有穷正整数数列
,记![]()
,即
为
中的最小值,设由
组成的数列
称为
的“新型数列”.
(1)若数列
为2019,2020,2019,2018,2017,请写出
的“新型数列”
的所有项;
(2)若数列
满足
,且其对应的“新型数列”
项数
,求
的所有项的和;
(3)若数列
的各项互不相等且所有项的和等于所有项的积,求符合条件的
及其对应的“新型数列”
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com